$30 off During Our Annual Pro Sale. View Details »
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Scale like a pro
Search
Python Porto
December 14, 2017
Programming
1
290
Scale like a pro
Distributed task processing with Python and Celery
Python Porto
December 14, 2017
Tweet
Share
More Decks by Python Porto
See All by Python Porto
Detecting phishing with Recurrent Neural Networks
pyporto
0
45
Quick and Robust API with Django Rest Framework
pyporto
1
350
Django as your data management framework
pyporto
1
1.2k
Can my computer make jokes
pyporto
0
120
Building a serverless cloud service
pyporto
0
64
Python Porto #10. Past, present and future
pyporto
0
92
Entertaining testing with pytest
pyporto
0
200
Joyful Python Web App development with Appier
pyporto
0
160
Other Decks in Programming
See All in Programming
Giselleで作るAI QAアシスタント 〜 Pull Requestレビューに継続的QAを
codenote
0
250
gunshi
kazupon
1
110
從冷知識到漏洞,你不懂的 Web,駭客懂 - Huli @ WebConf Taiwan 2025
aszx87410
2
2.9k
新卒エンジニアのプルリクエスト with AI駆動
fukunaga2025
0
230
認証・認可の基本を学ぼう後編
kouyuume
0
240
Python札幌 LT資料
t3tra
6
980
メルカリのリーダビリティチームが取り組む、AI時代のスケーラブルな品質文化
cloverrose
0
100
0→1 フロントエンド開発 Tips🚀 #レバテックMeetup
bengo4com
0
110
tsgolintはいかにしてtypescript-goの非公開APIを呼び出しているのか
syumai
7
2.3k
dotfiles 式年遷宮 令和最新版
masawada
1
800
組み合わせ爆発にのまれない - 責務分割 x テスト
halhorn
1
160
re:Invent 2025 のイケてるサービスを紹介する
maroon1st
0
140
Featured
See All Featured
Learning to Love Humans: Emotional Interface Design
aarron
274
41k
SEOcharity - Dark patterns in SEO and UX: How to avoid them and build a more ethical web
sarafernandez
0
83
How to build a perfect <img>
jonoalderson
0
4.6k
How to optimise 3,500 product descriptions for ecommerce in one day using ChatGPT
katarinadahlin
PRO
0
3.3k
How to Ace a Technical Interview
jacobian
281
24k
Statistics for Hackers
jakevdp
799
230k
Building Flexible Design Systems
yeseniaperezcruz
330
39k
Building a Scalable Design System with Sketch
lauravandoore
463
34k
Visualizing Your Data: Incorporating Mongo into Loggly Infrastructure
mongodb
48
9.8k
What does AI have to do with Human Rights?
axbom
PRO
0
1.9k
RailsConf & Balkan Ruby 2019: The Past, Present, and Future of Rails at GitHub
eileencodes
141
34k
Making the Leap to Tech Lead
cromwellryan
135
9.7k
Transcript
Scale like a pro Distributed computing with message queues and
Python Roman Imankulov | Python Porto | December 2017
Source: https://blog.kissmetrics.com/wp-content/uploads/2011/04/loading-time.pdf
browser ./webserver.py request POST /obj/<id> obj.update()
browser ./webserver.py request POST /obj/<id> obj.update() update search indexes
browser ./webserver.py request POST /obj/<id> obj.update() update search indexes send
email “object updated” …
browser ./webserver.py request POST /obj/<id> obj.update() update search indexes update
business analytics send email “object updated” …
browser ./webserver.py request POST /obj/<id> obj.update() update search indexes update
business analytics send email “object updated” … response
None
browser ./webserver.py request POST /obj/<id> response obj.update() ./worker.py ./worker.py ./worker.py
update search indexes send email “object updated” update business analytics
Message queues
None
None
queue
frontends queue
frontends queue workers
frontends queue job 1 workers
frontends queue job 1 workers job 2
frontends queue job 1 workers job 2 job 3
frontends queue put() job 1 workers job 2 job 3
frontends queue put() job 1 workers job 2 job 3
frontends queue job 1 workers job 2 job 3
frontends queue job 1 workers put() job 2 job 3
frontends queue job 1 workers put() job 2 job 3
frontends queue job 1 workers job 2 job 3
frontends queue job 1 workers put() job 2 job 3
frontends queue job 1 workers put() job 2 job 3
frontends queue job 1 workers job 2 job 3
frontends queue job 1 get() workers job 2 job 3
frontends queue get() workers job 2 job 3 job 1
frontends queue workers job 2 job 3 job 1
frontends queue workers get() job 2 job 3 job 1
frontends queue workers get() job 3 job 1 job 2
frontends queue workers job 3 job 1 job 2
frontends queue workers job 3 job 2
frontends queue workers job 3 job 2 get()
frontends queue workers job 2 job 3 get()
frontends queue workers job 2 job 3
frontends queue workers
Queue in python
Multiprocessing
None
None
None
None
None
None
None
Celery The queue out of the box
None
None
None
None
None
Celery Workflows chains, groups and chords
Task signatures
Task signatures
Task signatures
Chains a(…) b(…) c(…)
Chains a(…) b(…) c(…)
Chains a(…) b(…) c(…)
a(…) b(…) c(…) Groups
a(…) b(…) c(…) Groups
a(…) b(…) c(…) Groups
Chords a(…) b(…) c(…) d(…)
Chords a(…) b(…) c(…) d(…)
Chords a(…) b(…) c(…) d(…)
Celery Extras out of the box
None
• Different backends
• Different backends • Different serializers
• Different backends • Different serializers • Callbacks / errbacks
• Different backends • Different serializers • Callbacks / errbacks
• Progress reports from tasks
• Different backends • Different serializers • Callbacks / errbacks
• Progress reports from tasks • Delayed tasks
• Different backends • Different serializers • Callbacks / errbacks
• Progress reports from tasks • Delayed tasks • Ignored results
• Different backends • Different serializers • Callbacks / errbacks
• Progress reports from tasks • Delayed tasks • Ignored results • Expiring results
• Different backends • Different serializers • Callbacks / errbacks
• Progress reports from tasks • Delayed tasks • Ignored results • Expiring results • Retry policies
• Different backends • Different serializers • Callbacks / errbacks
• Progress reports from tasks • Delayed tasks • Ignored results • Expiring results • Retry policies • Time limits on task execution
• Different backends • Different serializers • Callbacks / errbacks
• Progress reports from tasks • Delayed tasks • Ignored results • Expiring results • Retry policies • Time limits on task execution • Rate limits (N tasks per minute)
• Different backends • Different serializers • Callbacks / errbacks
• Progress reports from tasks • Delayed tasks • Ignored results • Expiring results • Retry policies • Time limits on task execution • Rate limits (N tasks per minute) • Autoscaling
• Different backends • Different serializers • Callbacks / errbacks
• Progress reports from tasks • Delayed tasks • Ignored results • Expiring results • Retry policies • Time limits on task execution • Rate limits (N tasks per minute) • Autoscaling • Multiple queues
• Different backends • Different serializers • Callbacks / errbacks
• Progress reports from tasks • Delayed tasks • Ignored results • Expiring results • Retry policies • Time limits on task execution • Rate limits (N tasks per minute) • Autoscaling • Multiple queues • Introspection and statistics
• Different backends • Different serializers • Callbacks / errbacks
• Progress reports from tasks • Delayed tasks • Ignored results • Expiring results • Retry policies • Time limits on task execution • Rate limits (N tasks per minute) • Autoscaling • Multiple queues • Introspection and statistics • Periodic tasks and crontabs
None
facebook.com/pyporto