Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Scale like a pro
Search
Python Porto
December 14, 2017
Programming
1
250
Scale like a pro
Distributed task processing with Python and Celery
Python Porto
December 14, 2017
Tweet
Share
More Decks by Python Porto
See All by Python Porto
Detecting phishing with Recurrent Neural Networks
pyporto
0
36
Quick and Robust API with Django Rest Framework
pyporto
1
340
Django as your data management framework
pyporto
1
1.1k
Can my computer make jokes
pyporto
0
110
Building a serverless cloud service
pyporto
0
51
Python Porto #10. Past, present and future
pyporto
0
81
Entertaining testing with pytest
pyporto
0
180
Joyful Python Web App development with Appier
pyporto
0
150
Other Decks in Programming
See All in Programming
GDG Super.init(version=6) - From Where to Wear : 모바일 개발자가 워치에서 발견한 인사이트
haeti2
0
540
PHPによる"非"構造化プログラミング入門 -本当に熱いスパゲティコードを求めて- #phperkaigi
o0h
PRO
0
870
アーキテクトと美学 / Architecture and Aesthetics
nrslib
12
2.9k
Devin入門と最近のアップデートから見るDevinの進化 / Introduction to Devin and the Evolution of Devin as Seen in Recent Update
rkaga
7
3k
PHPでお金を扱う時、終わりのない 謎の1円調査の旅にでなくて済む方法
nakka
3
950
PHPUnit 高速化テクニック / PHPUnit Speedup Techniques
pinkumohikan
1
780
WordPress Playground for Developers
iambherulal
0
120
MCP世界への招待: AIエンジニアが創る次世代エージェント連携の世界
gunta
1
360
RubyKaigiで手に入れた HHKB Studioのための HIDRawドライバ
iberianpig
0
170
php-fpm がリクエスト処理する仕組みを追う / Tracing-How-php-fpm-Handles-Requests
shin1x1
4
750
Windows版PHPのビルド手順とPHP 8.4における変更点
matsuo_atsushi
0
360
신입 안드로이드 개발자의 AI 스타트업 생존기 (+ Native C++ Code를 Android에서 사용해보기)
dygames
0
480
Featured
See All Featured
A designer walks into a library…
pauljervisheath
205
24k
Large-scale JavaScript Application Architecture
addyosmani
511
110k
How to Ace a Technical Interview
jacobian
276
23k
Creating an realtime collaboration tool: Agile Flush - .NET Oxford
marcduiker
28
2k
Design and Strategy: How to Deal with People Who Don’t "Get" Design
morganepeng
129
19k
Rebuilding a faster, lazier Slack
samanthasiow
80
8.9k
Building a Modern Day E-commerce SEO Strategy
aleyda
38
7.2k
KATA
mclloyd
29
14k
JavaScript: Past, Present, and Future - NDC Porto 2020
reverentgeek
47
5.3k
How To Stay Up To Date on Web Technology
chriscoyier
790
250k
Improving Core Web Vitals using Speculation Rules API
sergeychernyshev
11
600
A Tale of Four Properties
chriscoyier
158
23k
Transcript
Scale like a pro Distributed computing with message queues and
Python Roman Imankulov | Python Porto | December 2017
Source: https://blog.kissmetrics.com/wp-content/uploads/2011/04/loading-time.pdf
browser ./webserver.py request POST /obj/<id> obj.update()
browser ./webserver.py request POST /obj/<id> obj.update() update search indexes
browser ./webserver.py request POST /obj/<id> obj.update() update search indexes send
email “object updated” …
browser ./webserver.py request POST /obj/<id> obj.update() update search indexes update
business analytics send email “object updated” …
browser ./webserver.py request POST /obj/<id> obj.update() update search indexes update
business analytics send email “object updated” … response
None
browser ./webserver.py request POST /obj/<id> response obj.update() ./worker.py ./worker.py ./worker.py
update search indexes send email “object updated” update business analytics
Message queues
None
None
queue
frontends queue
frontends queue workers
frontends queue job 1 workers
frontends queue job 1 workers job 2
frontends queue job 1 workers job 2 job 3
frontends queue put() job 1 workers job 2 job 3
frontends queue put() job 1 workers job 2 job 3
frontends queue job 1 workers job 2 job 3
frontends queue job 1 workers put() job 2 job 3
frontends queue job 1 workers put() job 2 job 3
frontends queue job 1 workers job 2 job 3
frontends queue job 1 workers put() job 2 job 3
frontends queue job 1 workers put() job 2 job 3
frontends queue job 1 workers job 2 job 3
frontends queue job 1 get() workers job 2 job 3
frontends queue get() workers job 2 job 3 job 1
frontends queue workers job 2 job 3 job 1
frontends queue workers get() job 2 job 3 job 1
frontends queue workers get() job 3 job 1 job 2
frontends queue workers job 3 job 1 job 2
frontends queue workers job 3 job 2
frontends queue workers job 3 job 2 get()
frontends queue workers job 2 job 3 get()
frontends queue workers job 2 job 3
frontends queue workers
Queue in python
Multiprocessing
None
None
None
None
None
None
None
Celery The queue out of the box
None
None
None
None
None
Celery Workflows chains, groups and chords
Task signatures
Task signatures
Task signatures
Chains a(…) b(…) c(…)
Chains a(…) b(…) c(…)
Chains a(…) b(…) c(…)
a(…) b(…) c(…) Groups
a(…) b(…) c(…) Groups
a(…) b(…) c(…) Groups
Chords a(…) b(…) c(…) d(…)
Chords a(…) b(…) c(…) d(…)
Chords a(…) b(…) c(…) d(…)
Celery Extras out of the box
None
• Different backends
• Different backends • Different serializers
• Different backends • Different serializers • Callbacks / errbacks
• Different backends • Different serializers • Callbacks / errbacks
• Progress reports from tasks
• Different backends • Different serializers • Callbacks / errbacks
• Progress reports from tasks • Delayed tasks
• Different backends • Different serializers • Callbacks / errbacks
• Progress reports from tasks • Delayed tasks • Ignored results
• Different backends • Different serializers • Callbacks / errbacks
• Progress reports from tasks • Delayed tasks • Ignored results • Expiring results
• Different backends • Different serializers • Callbacks / errbacks
• Progress reports from tasks • Delayed tasks • Ignored results • Expiring results • Retry policies
• Different backends • Different serializers • Callbacks / errbacks
• Progress reports from tasks • Delayed tasks • Ignored results • Expiring results • Retry policies • Time limits on task execution
• Different backends • Different serializers • Callbacks / errbacks
• Progress reports from tasks • Delayed tasks • Ignored results • Expiring results • Retry policies • Time limits on task execution • Rate limits (N tasks per minute)
• Different backends • Different serializers • Callbacks / errbacks
• Progress reports from tasks • Delayed tasks • Ignored results • Expiring results • Retry policies • Time limits on task execution • Rate limits (N tasks per minute) • Autoscaling
• Different backends • Different serializers • Callbacks / errbacks
• Progress reports from tasks • Delayed tasks • Ignored results • Expiring results • Retry policies • Time limits on task execution • Rate limits (N tasks per minute) • Autoscaling • Multiple queues
• Different backends • Different serializers • Callbacks / errbacks
• Progress reports from tasks • Delayed tasks • Ignored results • Expiring results • Retry policies • Time limits on task execution • Rate limits (N tasks per minute) • Autoscaling • Multiple queues • Introspection and statistics
• Different backends • Different serializers • Callbacks / errbacks
• Progress reports from tasks • Delayed tasks • Ignored results • Expiring results • Retry policies • Time limits on task execution • Rate limits (N tasks per minute) • Autoscaling • Multiple queues • Introspection and statistics • Periodic tasks and crontabs
None
facebook.com/pyporto