$30 off During Our Annual Pro Sale. View Details »
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Scale like a pro
Search
Python Porto
December 14, 2017
Programming
1
290
Scale like a pro
Distributed task processing with Python and Celery
Python Porto
December 14, 2017
Tweet
Share
More Decks by Python Porto
See All by Python Porto
Detecting phishing with Recurrent Neural Networks
pyporto
0
45
Quick and Robust API with Django Rest Framework
pyporto
1
350
Django as your data management framework
pyporto
1
1.2k
Can my computer make jokes
pyporto
0
120
Building a serverless cloud service
pyporto
0
64
Python Porto #10. Past, present and future
pyporto
0
91
Entertaining testing with pytest
pyporto
0
200
Joyful Python Web App development with Appier
pyporto
0
160
Other Decks in Programming
See All in Programming
SwiftUIで本格音ゲー実装してみた
hypebeans
0
420
Go コードベースの構成と AI コンテキスト定義
andpad
0
130
関数実行の裏側では何が起きているのか?
minop1205
1
710
マスタデータ問題、マイクロサービスでどう解くか
kts
0
110
これだけで丸わかり!LangChain v1.0 アップデートまとめ
os1ma
6
1.9k
実はマルチモーダルだった。ブラウザの組み込みAI🧠でWebの未来を感じてみよう #jsfes #gemini
n0bisuke2
3
1.2k
エディターってAIで操作できるんだぜ
kis9a
0
740
Python札幌 LT資料
t3tra
3
620
AIの誤りが許されない業務システムにおいて“信頼されるAI” を目指す / building-trusted-ai-systems
yuya4
6
3.7k
非同期処理の迷宮を抜ける: 初学者がつまづく構造的な原因
pd1xx
1
730
AIエンジニアリングのご紹介 / Introduction to AI Engineering
rkaga
8
3k
【Streamlit x Snowflake】データ基盤からアプリ開発・AI活用まで、すべてをSnowflake内で実現
ayumu_yamaguchi
1
120
Featured
See All Featured
How STYLIGHT went responsive
nonsquared
100
6k
Design and Strategy: How to Deal with People Who Don’t "Get" Design
morganepeng
132
19k
jQuery: Nuts, Bolts and Bling
dougneiner
65
8.3k
Testing 201, or: Great Expectations
jmmastey
46
7.8k
Code Reviewing Like a Champion
maltzj
527
40k
How GitHub (no longer) Works
holman
316
140k
How to train your dragon (web standard)
notwaldorf
97
6.4k
More Than Pixels: Becoming A User Experience Designer
marktimemedia
2
240
ピンチをチャンスに:未来をつくるプロダクトロードマップ #pmconf2020
aki_iinuma
128
54k
A designer walks into a library…
pauljervisheath
210
24k
A better future with KSS
kneath
240
18k
The innovator’s Mindset - Leading Through an Era of Exponential Change - McGill University 2025
jdejongh
PRO
1
61
Transcript
Scale like a pro Distributed computing with message queues and
Python Roman Imankulov | Python Porto | December 2017
Source: https://blog.kissmetrics.com/wp-content/uploads/2011/04/loading-time.pdf
browser ./webserver.py request POST /obj/<id> obj.update()
browser ./webserver.py request POST /obj/<id> obj.update() update search indexes
browser ./webserver.py request POST /obj/<id> obj.update() update search indexes send
email “object updated” …
browser ./webserver.py request POST /obj/<id> obj.update() update search indexes update
business analytics send email “object updated” …
browser ./webserver.py request POST /obj/<id> obj.update() update search indexes update
business analytics send email “object updated” … response
None
browser ./webserver.py request POST /obj/<id> response obj.update() ./worker.py ./worker.py ./worker.py
update search indexes send email “object updated” update business analytics
Message queues
None
None
queue
frontends queue
frontends queue workers
frontends queue job 1 workers
frontends queue job 1 workers job 2
frontends queue job 1 workers job 2 job 3
frontends queue put() job 1 workers job 2 job 3
frontends queue put() job 1 workers job 2 job 3
frontends queue job 1 workers job 2 job 3
frontends queue job 1 workers put() job 2 job 3
frontends queue job 1 workers put() job 2 job 3
frontends queue job 1 workers job 2 job 3
frontends queue job 1 workers put() job 2 job 3
frontends queue job 1 workers put() job 2 job 3
frontends queue job 1 workers job 2 job 3
frontends queue job 1 get() workers job 2 job 3
frontends queue get() workers job 2 job 3 job 1
frontends queue workers job 2 job 3 job 1
frontends queue workers get() job 2 job 3 job 1
frontends queue workers get() job 3 job 1 job 2
frontends queue workers job 3 job 1 job 2
frontends queue workers job 3 job 2
frontends queue workers job 3 job 2 get()
frontends queue workers job 2 job 3 get()
frontends queue workers job 2 job 3
frontends queue workers
Queue in python
Multiprocessing
None
None
None
None
None
None
None
Celery The queue out of the box
None
None
None
None
None
Celery Workflows chains, groups and chords
Task signatures
Task signatures
Task signatures
Chains a(…) b(…) c(…)
Chains a(…) b(…) c(…)
Chains a(…) b(…) c(…)
a(…) b(…) c(…) Groups
a(…) b(…) c(…) Groups
a(…) b(…) c(…) Groups
Chords a(…) b(…) c(…) d(…)
Chords a(…) b(…) c(…) d(…)
Chords a(…) b(…) c(…) d(…)
Celery Extras out of the box
None
• Different backends
• Different backends • Different serializers
• Different backends • Different serializers • Callbacks / errbacks
• Different backends • Different serializers • Callbacks / errbacks
• Progress reports from tasks
• Different backends • Different serializers • Callbacks / errbacks
• Progress reports from tasks • Delayed tasks
• Different backends • Different serializers • Callbacks / errbacks
• Progress reports from tasks • Delayed tasks • Ignored results
• Different backends • Different serializers • Callbacks / errbacks
• Progress reports from tasks • Delayed tasks • Ignored results • Expiring results
• Different backends • Different serializers • Callbacks / errbacks
• Progress reports from tasks • Delayed tasks • Ignored results • Expiring results • Retry policies
• Different backends • Different serializers • Callbacks / errbacks
• Progress reports from tasks • Delayed tasks • Ignored results • Expiring results • Retry policies • Time limits on task execution
• Different backends • Different serializers • Callbacks / errbacks
• Progress reports from tasks • Delayed tasks • Ignored results • Expiring results • Retry policies • Time limits on task execution • Rate limits (N tasks per minute)
• Different backends • Different serializers • Callbacks / errbacks
• Progress reports from tasks • Delayed tasks • Ignored results • Expiring results • Retry policies • Time limits on task execution • Rate limits (N tasks per minute) • Autoscaling
• Different backends • Different serializers • Callbacks / errbacks
• Progress reports from tasks • Delayed tasks • Ignored results • Expiring results • Retry policies • Time limits on task execution • Rate limits (N tasks per minute) • Autoscaling • Multiple queues
• Different backends • Different serializers • Callbacks / errbacks
• Progress reports from tasks • Delayed tasks • Ignored results • Expiring results • Retry policies • Time limits on task execution • Rate limits (N tasks per minute) • Autoscaling • Multiple queues • Introspection and statistics
• Different backends • Different serializers • Callbacks / errbacks
• Progress reports from tasks • Delayed tasks • Ignored results • Expiring results • Retry policies • Time limits on task execution • Rate limits (N tasks per minute) • Autoscaling • Multiple queues • Introspection and statistics • Periodic tasks and crontabs
None
facebook.com/pyporto