Upgrade to Pro — share decks privately, control downloads, hide ads and more …

An attempt to reproduce WaveNet-based text-to-speech synthesis

An attempt to reproduce WaveNet-based text-to-speech synthesis

Ryuichi Yamamoto

June 15, 2018
Tweet

More Decks by Ryuichi Yamamoto

Other Decks in Technology

Transcript

  1. 8BWF/FUח״׷窟鎘涸갈㡮さ䧭ח䮋䨌׃׋鑧
    2018/06/15 Ryuichi Yamamoto @ LINE Corp.
    MACHINE LEARNING Meetup KANSAI
    1

    View Slide

  2. 5FYUUPTQFFDITZOUIFTJT
    2
    5FYU

    View Slide

  3. 荈䊹稱➜ with my own text-to-speech (TTS)
    )J NZOBNFJT3ZVJDIJ:BNBNPUP*NBTPGUXBSFFOHJOFFSXPSLJOHBU-*/&
    DPSQPSBUJPO ,ZPUP
    3

    View Slide

  4. WaveNet: 3遤תה׭
    • (PPHMF%FFQ.JOEח״׏ג涪僇
    • 傀㶷ך405"׾㣐ֹֻ♳㔐׷荈搫䚍ך넝ְㅷ颵
    • 堣唒㷕统ك٦أך窟鎘涸갈㡮さ䧭ٌرٕ
    4
    https://deepmind.com/blog/wavenet-generative-model-raw-audio/

    View Slide

  5. WaveNet: 岚䕎ٖكٕך荈䊹㔐䌓㘗欰䧭ٌرٕ
    5

    View Slide

  6. ֶ⠗ִ׃׋ְֿה
    • 갈㡮さ䧭UFYUUPTQFFDIכ(16אד׮㨣׭׵׸׷
    • 8BWF/FUח״׷넝ㅷ颵ז갈㡮さ䧭׮갹䓸׸ל⦐➂ד׮〳腉
    6

    View Slide

  7. ➭䩛岀הך嫰鯰 (1/2)
    7
    Text: Scientists at the CERN laboratory say they have discovered a
    new particle
    Deep Voice3 [Ping ‘18]. (trained on LJSpeech, w/o WN)
    Tacotron 2 [Shen; ‘18]. (trained on LJSpeech , w/ WN)
    Tacotron 2 [Shen; ’18]. (trained on proprietary corpus , w/ WN)

    View Slide

  8. ➭䩛岀הך嫰鯰 (2/2)
    8
    Text: Generative adversarial network or variational auto-encoder.
    Deep Voice3 [Ping ‘18]. (trained on LJSpeech, w/o WN)
    Tacotron 2 [Shen; ‘18]. (trained on LJSpeech , w/ WN)
    Tacotron 2 [Shen; ’18]. (trained on proprietary corpus , w/ WN)

    View Slide

  9. Ꟛ涪ך酅⩎
    9

    View Slide

  10. GPUך侧ָ駈׶זְ㉏겗
    10
    https://arxiv.org/abs/1712.05884

    View Slide

  11. GPUך侧ָ駈׶זְ㉏겗ח㼎ׅ׷鍑瘶
    11
    • 孡さ
    – 〴 (595Jד갹䓸׶ת׃׋
    – ָծ湫䠬דְֽ׷ה䙼׏׋ךדծװ׶ֹת׃׋

    View Slide

  12. 㷕统ח֮ת׶ח儗꟦ַַָ׷㉏겗
    • ⡦傈ַַ׏׋ך٥٥٥
    – رٌ갈㡮ٖكٕך넝ㅷ颵ח麦ׅ׷חכ鹈꟦ֻ׵ְכ䗳銲L
    – 傈ד׮ TPGUNBY׾⢪ִל
    ׉׸ז׶ךㅷ颵חכז׷
    • 鎘皾׃גְ׷꟦זח׃גְ׋ך٥٥٥
    – ˘Ī˘
    ˘
    12

    View Slide

  13. 䱿锷ח֮ת׶ח儗꟦ַַָ׷㉏겗
    • 猱ך갈㡮ךさ䧭ח ⴓ PO(PPHMF$PMBCPSBUPSZ

    – ˘Ī˘
    ˘
    13

    View Slide

  14. ֶ⠗ִ׃׋ַ׏׋ֿה
    • 갈㡮さ䧭כ(16אַ׵㨣׭׵׸תׅ 8BWF/FUכ㼰׃鳞ְדָׅ

    • 8BWF/FUדכꬊ䌢ח넝ㅷ颵ז갈㡮さ䧭ָ〳腉
    – 剑鵚ך،فٗ٦ثכ
    سً؎ٝ濼陎׉׿זחְ׵זְךדծٖحخزٓ؎
    14

    View Slide

  15. 剑䖓ח
    15
    Thank you for coming to the machine learning meetup Kansai on June 15!

    View Slide

  16. References
    • <%FFQ.JOEˎ>8BWF/FU"(FOFSBUJWF.PEFMGPS3BX"VEJP IUUQTEFFQNJOEDPNCMPHXBWFOFUHFOFSBUJWF
    NPEFMSBXBVEJP
    • "BSPOWBOEFO0PSE 4BOEFS%JFMFNBO )FJHB ;FO FUBM 8BWF/FU"(FOFSBUJWF.PEFMGPS
    3BX"VEJP BS9JW 4FQ
    • <1JOHˎ>8FJ1JOH ,BJOBO 1FOH "OESFX(JCJBOTLZ FUBM ˑ%FFQ7PJDF4DBMJOH5FYUUP4QFFDIXJUI
    $POWPMVUJPOBM4FRVFODF-FBSOJOH˒ 1SPDPG*$-3
    • <4IFOˏ>+POBUIBO4IFO 3VPNJOH 1BOH 3PO+8FJTT FUBM /BUVSBM5544ZOUIFTJTCZ$POEJUJPOJOH8BWF/FU
    PO.FM4QFDUSPHSBN1SFEJDUJPOT 1SPDPG*$"441
    16

    View Slide