$30 off During Our Annual Pro Sale. View Details »
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Recommender Engines : A Peak into Predictive An...
Search
Raghav Bali
June 12, 2016
Programming
0
100
Recommender Engines : A Peak into Predictive Analytics
Proposed talk on Predictive Analytics and Recommender Engines
Raghav Bali
June 12, 2016
Tweet
Share
Other Decks in Programming
See All in Programming
AIコーディングエージェント(Manus)
kondai24
0
180
リリース時」テストから「デイリー実行」へ!開発マネージャが取り組んだ、レガシー自動テストのモダン化戦略
goataka
0
130
生成AIを利用するだけでなく、投資できる組織へ
pospome
2
340
Developing static sites with Ruby
okuramasafumi
0
290
新卒エンジニアのプルリクエスト with AI駆動
fukunaga2025
0
230
JETLS.jl ─ A New Language Server for Julia
abap34
1
400
【Streamlit x Snowflake】データ基盤からアプリ開発・AI活用まで、すべてをSnowflake内で実現
ayumu_yamaguchi
1
120
複数人でのCLI/Infrastructure as Codeの暮らしを良くする
shmokmt
5
2.3k
20251212 AI 時代的 Legacy Code 營救術 2025 WebConf
mouson
0
160
ViewファーストなRailsアプリ開発のたのしさ
sugiwe
0
470
chocoZAPサービス予約システムをNuxtで内製化した話
rizap_tech
0
110
AtCoder Conference 2025「LLM時代のAHC」
imjk
2
490
Featured
See All Featured
How GitHub (no longer) Works
holman
316
140k
Product Roadmaps are Hard
iamctodd
PRO
55
12k
Docker and Python
trallard
47
3.7k
The Psychology of Web Performance [Beyond Tellerrand 2023]
tammyeverts
49
3.2k
What’s in a name? Adding method to the madness
productmarketing
PRO
24
3.8k
Visualizing Your Data: Incorporating Mongo into Loggly Infrastructure
mongodb
48
9.8k
The Hidden Cost of Media on the Web [PixelPalooza 2025]
tammyeverts
1
100
Improving Core Web Vitals using Speculation Rules API
sergeychernyshev
21
1.3k
Imperfection Machines: The Place of Print at Facebook
scottboms
269
13k
jQuery: Nuts, Bolts and Bling
dougneiner
65
8.3k
Typedesign – Prime Four
hannesfritz
42
2.9k
Side Projects
sachag
455
43k
Transcript
Recommender Engines A Peak into Predictive Analytics
Predictive Analytics http://giphy.com/gifs/season-6-the-simpsons-6x19-3orieSdZDhn7I6gViw
Predictive Analytics • Analysis of current and historical facts/data to
make predictions about the future • Traditionally a field of statistics/statistical computing. • Now encompasses machine learning and data mining. Current Data Historical Data Predict Future Machine Learning / Statistics
Analytical Maturity
Analytical Maturity
Recommender Engines • Class of Information Filtering systems • Model
user preferences • Analyse input data to predict output similar to user preferences.
Types of RE • Collaborative Filters • Content Based Filters
• Hybrid Recommender Engines http://i.imgur.com/xlXjtOL.jpg
RE: Collaborative Filters • Also termed as User Based CF
• Users with similar behaviours and/or attributes have similar preferences
RE : Content Based • Also termed as Item Based
CD+F • Item attributes along with user personas are utilized to build preference models
RE : Hybrid • Best of both worlds • Can
be modelled using User Based CF and Item Based CF in different configurations. • Less prone to issues of sparsity and cold start.
Quick and Dirty RE • Matrix Factorization based Recommender Engine
Quick and Dirty RE • Code and Results
Applications • Jobs you may be interested in • Who
to follow • Other movies you might enjoy
Issues • Cold Start Problem • Sparsity Problem • Filter
Bubble http://ebiquity.umbc.edu/blogger/2015/06/08/hot-stuff-at-coldstart/
References • R Machine Learning by Example (link) • Gartner
Analytics Maturity Model (link)
THANK YOU Raghav Bali (@rghv_bali) http://xkcd.org/892/