Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Recommender Engines : A Peak into Predictive An...
Search
Raghav Bali
June 12, 2016
Programming
0
100
Recommender Engines : A Peak into Predictive Analytics
Proposed talk on Predictive Analytics and Recommender Engines
Raghav Bali
June 12, 2016
Tweet
Share
Other Decks in Programming
See All in Programming
360° Signals in Angular: Signal Forms with SignalStore & Resources @ngLondon 01/2026
manfredsteyer
PRO
0
130
なるべく楽してバックエンドに型をつけたい!(楽とは言ってない)
hibiki_cube
0
140
Vibe Coding - AI 驅動的軟體開發
mickyp100
0
180
CSC307 Lecture 10
javiergs
PRO
1
660
余白を設計しフロントエンド開発を 加速させる
tsukuha
7
2.1k
Patterns of Patterns
denyspoltorak
0
1.4k
AI によるインシデント初動調査の自動化を行う AI インシデントコマンダーを作った話
azukiazusa1
1
740
Raku Raku Notion 20260128
hareyakayuruyaka
0
340
AIによる高速開発をどう制御するか? ガードレール設置で開発速度と品質を両立させたチームの事例
tonkotsuboy_com
7
2.4k
Apache Iceberg V3 and migration to V3
tomtanaka
0
160
ノイジーネイバー問題を解決する 公平なキューイング
occhi
0
110
Rust 製のコードエディタ “Zed” を使ってみた
nearme_tech
PRO
0
190
Featured
See All Featured
Hiding What from Whom? A Critical Review of the History of Programming languages for Music
tomoyanonymous
2
420
30 Presentation Tips
portentint
PRO
1
220
Testing 201, or: Great Expectations
jmmastey
46
8k
Visualization
eitanlees
150
17k
Deep Space Network (abreviated)
tonyrice
0
49
How to train your dragon (web standard)
notwaldorf
97
6.5k
Agile Leadership in an Agile Organization
kimpetersen
PRO
0
83
Agile Actions for Facilitating Distributed Teams - ADO2019
mkilby
0
120
Why Your Marketing Sucks and What You Can Do About It - Sophie Logan
marketingsoph
0
76
Large-scale JavaScript Application Architecture
addyosmani
515
110k
Crafting Experiences
bethany
1
49
Tell your own story through comics
letsgokoyo
1
810
Transcript
Recommender Engines A Peak into Predictive Analytics
Predictive Analytics http://giphy.com/gifs/season-6-the-simpsons-6x19-3orieSdZDhn7I6gViw
Predictive Analytics • Analysis of current and historical facts/data to
make predictions about the future • Traditionally a field of statistics/statistical computing. • Now encompasses machine learning and data mining. Current Data Historical Data Predict Future Machine Learning / Statistics
Analytical Maturity
Analytical Maturity
Recommender Engines • Class of Information Filtering systems • Model
user preferences • Analyse input data to predict output similar to user preferences.
Types of RE • Collaborative Filters • Content Based Filters
• Hybrid Recommender Engines http://i.imgur.com/xlXjtOL.jpg
RE: Collaborative Filters • Also termed as User Based CF
• Users with similar behaviours and/or attributes have similar preferences
RE : Content Based • Also termed as Item Based
CD+F • Item attributes along with user personas are utilized to build preference models
RE : Hybrid • Best of both worlds • Can
be modelled using User Based CF and Item Based CF in different configurations. • Less prone to issues of sparsity and cold start.
Quick and Dirty RE • Matrix Factorization based Recommender Engine
Quick and Dirty RE • Code and Results
Applications • Jobs you may be interested in • Who
to follow • Other movies you might enjoy
Issues • Cold Start Problem • Sparsity Problem • Filter
Bubble http://ebiquity.umbc.edu/blogger/2015/06/08/hot-stuff-at-coldstart/
References • R Machine Learning by Example (link) • Gartner
Analytics Maturity Model (link)
THANK YOU Raghav Bali (@rghv_bali) http://xkcd.org/892/