Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Recommender Engines : A Peak into Predictive An...
Search
Raghav Bali
June 12, 2016
Programming
0
100
Recommender Engines : A Peak into Predictive Analytics
Proposed talk on Predictive Analytics and Recommender Engines
Raghav Bali
June 12, 2016
Tweet
Share
Other Decks in Programming
See All in Programming
AIを駆使して新しい技術を効率的に理解する方法
nogu66
1
640
イベントストーミングのはじめかた / Getting Started with Event Storming
nrslib
1
600
Claude Code on the Web を超える!? Codex Cloud の実践テク5選
sunagaku
0
560
[堅牢.py #1] テストを書かない研究者に送る、最初にテストを書く実験コード入門 / Let's start your ML project by writing tests
shunk031
9
3.4k
なぜ強調表示できず ** が表示されるのか — Perlで始まったMarkdownの歴史と日本語文書における課題
kwahiro
12
6.5k
ゼロダウンタイムでミドルウェアの バージョンアップを実現した手法と課題
wind111
0
200
Honoを技術選定したAI要件定義プラットフォームAcsimでの意思決定
codenote
0
250
AI駆動開発ライフサイクル(AI-DLC)のホワイトペーパーを解説
swxhariu5
0
1.1k
Module Harmony
petamoriken
2
460
詳細の決定を遅らせつつ実装を早くする
shimabox
1
1.3k
AI 時代だからこそ抑えたい「価値のある」PHP ユニットテストを書く技術 #phpconfuk / phpcon-fukuoka-2025
shogogg
1
550
What's New in Web AI?
christianliebel
PRO
0
130
Featured
See All Featured
The Illustrated Children's Guide to Kubernetes
chrisshort
51
51k
Balancing Empowerment & Direction
lara
5
750
Into the Great Unknown - MozCon
thekraken
40
2.2k
Learning to Love Humans: Emotional Interface Design
aarron
274
41k
The Cult of Friendly URLs
andyhume
79
6.7k
Designing for Performance
lara
610
69k
RailsConf & Balkan Ruby 2019: The Past, Present, and Future of Rails at GitHub
eileencodes
140
34k
Fantastic passwords and where to find them - at NoRuKo
philnash
52
3.5k
YesSQL, Process and Tooling at Scale
rocio
174
15k
Navigating Team Friction
lara
190
15k
How to Create Impact in a Changing Tech Landscape [PerfNow 2023]
tammyeverts
55
3.1k
個人開発の失敗を避けるイケてる考え方 / tips for indie hackers
panda_program
118
20k
Transcript
Recommender Engines A Peak into Predictive Analytics
Predictive Analytics http://giphy.com/gifs/season-6-the-simpsons-6x19-3orieSdZDhn7I6gViw
Predictive Analytics • Analysis of current and historical facts/data to
make predictions about the future • Traditionally a field of statistics/statistical computing. • Now encompasses machine learning and data mining. Current Data Historical Data Predict Future Machine Learning / Statistics
Analytical Maturity
Analytical Maturity
Recommender Engines • Class of Information Filtering systems • Model
user preferences • Analyse input data to predict output similar to user preferences.
Types of RE • Collaborative Filters • Content Based Filters
• Hybrid Recommender Engines http://i.imgur.com/xlXjtOL.jpg
RE: Collaborative Filters • Also termed as User Based CF
• Users with similar behaviours and/or attributes have similar preferences
RE : Content Based • Also termed as Item Based
CD+F • Item attributes along with user personas are utilized to build preference models
RE : Hybrid • Best of both worlds • Can
be modelled using User Based CF and Item Based CF in different configurations. • Less prone to issues of sparsity and cold start.
Quick and Dirty RE • Matrix Factorization based Recommender Engine
Quick and Dirty RE • Code and Results
Applications • Jobs you may be interested in • Who
to follow • Other movies you might enjoy
Issues • Cold Start Problem • Sparsity Problem • Filter
Bubble http://ebiquity.umbc.edu/blogger/2015/06/08/hot-stuff-at-coldstart/
References • R Machine Learning by Example (link) • Gartner
Analytics Maturity Model (link)
THANK YOU Raghav Bali (@rghv_bali) http://xkcd.org/892/