Lock in $30 Savings on PRO—Offer Ends Soon! ⏳
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Recommender Engines : A Peak into Predictive An...
Search
Raghav Bali
June 12, 2016
Programming
0
100
Recommender Engines : A Peak into Predictive Analytics
Proposed talk on Predictive Analytics and Recommender Engines
Raghav Bali
June 12, 2016
Tweet
Share
Other Decks in Programming
See All in Programming
Navigation 3: 적응형 UI를 위한 앱 탐색
fornewid
1
210
AIコーディングエージェント(skywork)
kondai24
0
150
ローターアクトEクラブ アメリカンナイト:川端 柚菜 氏(Japan O.K. ローターアクトEクラブ 会長):2720 Japan O.K. ロータリーEクラブ2025年12月1日卓話
2720japanoke
0
720
MAP, Jigsaw, Code Golf 振り返り会 by 関東Kaggler会|Jigsaw 15th Solution
hasibirok0
0
230
組み合わせ爆発にのまれない - 責務分割 x テスト
halhorn
1
140
WebRTC、 綺麗に見るか滑らかに見るか
sublimer
1
160
俺流レスポンシブコーディング 2025
tak_dcxi
14
8.4k
Tinkerbellから学ぶ、Podで DHCPをリッスンする手法
tomokon
0
120
これだけで丸わかり!LangChain v1.0 アップデートまとめ
os1ma
6
1.7k
ViewファーストなRailsアプリ開発のたのしさ
sugiwe
0
430
Socio-Technical Evolution: Growing an Architecture and Its Organization for Fast Flow
cer
PRO
0
310
Microservices Platforms: When Team Topologies Meets Microservices Patterns
cer
PRO
1
1k
Featured
See All Featured
No one is an island. Learnings from fostering a developers community.
thoeni
21
3.5k
The Psychology of Web Performance [Beyond Tellerrand 2023]
tammyeverts
49
3.2k
Embracing the Ebb and Flow
colly
88
4.9k
jQuery: Nuts, Bolts and Bling
dougneiner
65
8.2k
Practical Orchestrator
shlominoach
190
11k
KATA
mclloyd
PRO
32
15k
StorybookのUI Testing Handbookを読んだ
zakiyama
31
6.4k
Evolution of real-time – Irina Nazarova, EuRuKo, 2024
irinanazarova
9
1.1k
Save Time (by Creating Custom Rails Generators)
garrettdimon
PRO
32
1.8k
Navigating Team Friction
lara
191
16k
The Art of Delivering Value - GDevCon NA Keynote
reverentgeek
16
1.8k
RailsConf & Balkan Ruby 2019: The Past, Present, and Future of Rails at GitHub
eileencodes
141
34k
Transcript
Recommender Engines A Peak into Predictive Analytics
Predictive Analytics http://giphy.com/gifs/season-6-the-simpsons-6x19-3orieSdZDhn7I6gViw
Predictive Analytics • Analysis of current and historical facts/data to
make predictions about the future • Traditionally a field of statistics/statistical computing. • Now encompasses machine learning and data mining. Current Data Historical Data Predict Future Machine Learning / Statistics
Analytical Maturity
Analytical Maturity
Recommender Engines • Class of Information Filtering systems • Model
user preferences • Analyse input data to predict output similar to user preferences.
Types of RE • Collaborative Filters • Content Based Filters
• Hybrid Recommender Engines http://i.imgur.com/xlXjtOL.jpg
RE: Collaborative Filters • Also termed as User Based CF
• Users with similar behaviours and/or attributes have similar preferences
RE : Content Based • Also termed as Item Based
CD+F • Item attributes along with user personas are utilized to build preference models
RE : Hybrid • Best of both worlds • Can
be modelled using User Based CF and Item Based CF in different configurations. • Less prone to issues of sparsity and cold start.
Quick and Dirty RE • Matrix Factorization based Recommender Engine
Quick and Dirty RE • Code and Results
Applications • Jobs you may be interested in • Who
to follow • Other movies you might enjoy
Issues • Cold Start Problem • Sparsity Problem • Filter
Bubble http://ebiquity.umbc.edu/blogger/2015/06/08/hot-stuff-at-coldstart/
References • R Machine Learning by Example (link) • Gartner
Analytics Maturity Model (link)
THANK YOU Raghav Bali (@rghv_bali) http://xkcd.org/892/