Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Recommender Engines : A Peak into Predictive An...
Search
Raghav Bali
June 12, 2016
Programming
0
100
Recommender Engines : A Peak into Predictive Analytics
Proposed talk on Predictive Analytics and Recommender Engines
Raghav Bali
June 12, 2016
Tweet
Share
Other Decks in Programming
See All in Programming
管你要 trace 什麼、bpftrace 用下去就對了 — COSCUP 2025
shunghsiyu
0
470
ECS初心者の仲間 – TUIツール「e1s」の紹介
keidarcy
0
100
testingを眺める
matumoto
1
110
CSC305 Summer Lecture 06
javiergs
PRO
0
100
書き捨てではなく継続開発可能なコードをAIコーディングエージェントで書くために意識していること
shuyakinjo
1
310
AIレビュアーをスケールさせるには / Scaling AI Reviewers
technuma
2
230
Nuances on Kubernetes - RubyConf Taiwan 2025
envek
0
200
オープンセミナー2025@広島LT技術ブログを続けるには
satoshi256kbyte
0
130
KessokuでDIでもgoroutineを活用する / Go Connect #6
mazrean
0
120
「リーダーは意思決定する人」って本当?~ 学びを現場で活かす、リーダー4ヶ月目の試行錯誤 ~
marina1017
0
240
GitHub Copilotの全体像と活用のヒント AI駆動開発の最初の一歩
74th
8
3.2k
未来を拓くAI技術〜エージェント開発とAI駆動開発〜
leveragestech
2
180
Featured
See All Featured
Done Done
chrislema
185
16k
VelocityConf: Rendering Performance Case Studies
addyosmani
332
24k
Optimizing for Happiness
mojombo
379
70k
The Art of Programming - Codeland 2020
erikaheidi
55
13k
Principles of Awesome APIs and How to Build Them.
keavy
126
17k
Automating Front-end Workflow
addyosmani
1370
200k
Building Applications with DynamoDB
mza
96
6.6k
GraphQLの誤解/rethinking-graphql
sonatard
71
11k
JavaScript: Past, Present, and Future - NDC Porto 2020
reverentgeek
50
5.5k
Reflections from 52 weeks, 52 projects
jeffersonlam
351
21k
Designing Dashboards & Data Visualisations in Web Apps
destraynor
231
53k
Six Lessons from altMBA
skipperchong
28
4k
Transcript
Recommender Engines A Peak into Predictive Analytics
Predictive Analytics http://giphy.com/gifs/season-6-the-simpsons-6x19-3orieSdZDhn7I6gViw
Predictive Analytics • Analysis of current and historical facts/data to
make predictions about the future • Traditionally a field of statistics/statistical computing. • Now encompasses machine learning and data mining. Current Data Historical Data Predict Future Machine Learning / Statistics
Analytical Maturity
Analytical Maturity
Recommender Engines • Class of Information Filtering systems • Model
user preferences • Analyse input data to predict output similar to user preferences.
Types of RE • Collaborative Filters • Content Based Filters
• Hybrid Recommender Engines http://i.imgur.com/xlXjtOL.jpg
RE: Collaborative Filters • Also termed as User Based CF
• Users with similar behaviours and/or attributes have similar preferences
RE : Content Based • Also termed as Item Based
CD+F • Item attributes along with user personas are utilized to build preference models
RE : Hybrid • Best of both worlds • Can
be modelled using User Based CF and Item Based CF in different configurations. • Less prone to issues of sparsity and cold start.
Quick and Dirty RE • Matrix Factorization based Recommender Engine
Quick and Dirty RE • Code and Results
Applications • Jobs you may be interested in • Who
to follow • Other movies you might enjoy
Issues • Cold Start Problem • Sparsity Problem • Filter
Bubble http://ebiquity.umbc.edu/blogger/2015/06/08/hot-stuff-at-coldstart/
References • R Machine Learning by Example (link) • Gartner
Analytics Maturity Model (link)
THANK YOU Raghav Bali (@rghv_bali) http://xkcd.org/892/