Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Recommender Engines : A Peak into Predictive An...
Search
Raghav Bali
June 12, 2016
Programming
0
100
Recommender Engines : A Peak into Predictive Analytics
Proposed talk on Predictive Analytics and Recommender Engines
Raghav Bali
June 12, 2016
Tweet
Share
Other Decks in Programming
See All in Programming
5つのアンチパターンから学ぶLT設計
narihara
1
120
エラーって何種類あるの?
kajitack
5
310
Railsアプリケーションと パフォーマンスチューニング ー 秒間5万リクエストの モバイルオーダーシステムを支える事例 ー Rubyセミナー 大阪
falcon8823
4
950
Team topologies and the microservice architecture: a synergistic relationship
cer
PRO
0
1.1k
#kanrk08 / 公開版 PicoRubyとマイコンでの自作トレーニング計測装置を用いたワークアウトの理想と現実
bash0c7
1
480
LINEヤフー データグループ紹介
lycorp_recruit_jp
0
890
FormFlow - Build Stunning Multistep Forms
yceruto
1
190
型付きアクターモデルがもたらす分散シミュレーションの未来
piyo7
0
810
What Spring Developers Should Know About Jakarta EE
ivargrimstad
0
250
CursorはMCPを使った方が良いぞ
taigakono
1
180
関数型まつりレポート for JuliaTokai #22
antimon2
0
150
Google Agent Development Kit でLINE Botを作ってみた
ymd65536
2
190
Featured
See All Featured
Dealing with People You Can't Stand - Big Design 2015
cassininazir
367
26k
The Cult of Friendly URLs
andyhume
79
6.5k
Let's Do A Bunch of Simple Stuff to Make Websites Faster
chriscoyier
507
140k
How to Ace a Technical Interview
jacobian
277
23k
The Art of Delivering Value - GDevCon NA Keynote
reverentgeek
15
1.5k
Design and Strategy: How to Deal with People Who Don’t "Get" Design
morganepeng
130
19k
Responsive Adventures: Dirty Tricks From The Dark Corners of Front-End
smashingmag
252
21k
個人開発の失敗を避けるイケてる考え方 / tips for indie hackers
panda_program
107
19k
CoffeeScript is Beautiful & I Never Want to Write Plain JavaScript Again
sstephenson
161
15k
Principles of Awesome APIs and How to Build Them.
keavy
126
17k
"I'm Feeling Lucky" - Building Great Search Experiences for Today's Users (#IAC19)
danielanewman
229
22k
Git: the NoSQL Database
bkeepers
PRO
430
65k
Transcript
Recommender Engines A Peak into Predictive Analytics
Predictive Analytics http://giphy.com/gifs/season-6-the-simpsons-6x19-3orieSdZDhn7I6gViw
Predictive Analytics • Analysis of current and historical facts/data to
make predictions about the future • Traditionally a field of statistics/statistical computing. • Now encompasses machine learning and data mining. Current Data Historical Data Predict Future Machine Learning / Statistics
Analytical Maturity
Analytical Maturity
Recommender Engines • Class of Information Filtering systems • Model
user preferences • Analyse input data to predict output similar to user preferences.
Types of RE • Collaborative Filters • Content Based Filters
• Hybrid Recommender Engines http://i.imgur.com/xlXjtOL.jpg
RE: Collaborative Filters • Also termed as User Based CF
• Users with similar behaviours and/or attributes have similar preferences
RE : Content Based • Also termed as Item Based
CD+F • Item attributes along with user personas are utilized to build preference models
RE : Hybrid • Best of both worlds • Can
be modelled using User Based CF and Item Based CF in different configurations. • Less prone to issues of sparsity and cold start.
Quick and Dirty RE • Matrix Factorization based Recommender Engine
Quick and Dirty RE • Code and Results
Applications • Jobs you may be interested in • Who
to follow • Other movies you might enjoy
Issues • Cold Start Problem • Sparsity Problem • Filter
Bubble http://ebiquity.umbc.edu/blogger/2015/06/08/hot-stuff-at-coldstart/
References • R Machine Learning by Example (link) • Gartner
Analytics Maturity Model (link)
THANK YOU Raghav Bali (@rghv_bali) http://xkcd.org/892/