Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
制約理論(TOC)入門
Search
Recruit
PRO
August 10, 2023
Technology
3
2.9k
制約理論(TOC)入門
2023年度リクルート エンジニアコース新人研修の講義資料です
Recruit
PRO
August 10, 2023
Tweet
Share
More Decks by Recruit
See All by Recruit
あなたの知らない Linuxカーネル脆弱性の世界
recruitengineers
PRO
3
200
dbtとBigQuery MLで実現する リクルートの営業支援基盤のモデル開発と保守運用
recruitengineers
PRO
3
190
『ホットペッパービューティー』のiOSアプリをUIKitからSwiftUIへ段階的に移行するためにやったこと
recruitengineers
PRO
4
1.7k
経営の意思決定を加速する 「事業KPIダッシュボード」構築の全貌
recruitengineers
PRO
4
320
Browser
recruitengineers
PRO
12
3.8k
JavaScript 研修
recruitengineers
PRO
8
2.1k
TypeScript入門
recruitengineers
PRO
37
15k
モダンフロントエンド 開発研修
recruitengineers
PRO
14
8k
Webアクセシビリティ入門
recruitengineers
PRO
4
2.3k
Other Decks in Technology
See All in Technology
今日から使える AWS Step Functions 小技集 / AWS Step Functions Tips
kinunori
5
630
技術の総合格闘技!?AIインフラの現在と未来。
ebiken
PRO
0
230
決済システムの信頼性を支える技術と運用の実践
ykagano
0
360
マイクロリブート ~ACEマインドセットで実現するアジャイル~
sony
0
160
嗚呼、当時の本番環境の状態で AI Agentを再評価したいなぁ...
po3rin
0
380
プログラミング言語を書く前に日本語を書く── AI 時代に求められる「言葉で考える」力/登壇資料(井田 献一朗)
hacobu
PRO
0
100
どうなる Remix 3
tanakahisateru
2
350
設計は最強のプロンプト - AI時代に武器にすべきスキルとは?-
kenichirokimura
1
330
Spec Driven Development入門/spec_driven_development_for_learners
hanhan1978
1
1k
Pythonで構築する全国市町村ナレッジグラフ: GraphRAGを用いた意味的地域検索への応用
negi111111
8
3.3k
仕様駆動 x Codex で 超効率開発
ismk
2
1.2k
Data Engineering Guide 2025 #data_summit_findy by @Kazaneya_PR / 20251106
kazaneya
PRO
10
2.1k
Featured
See All Featured
Visualization
eitanlees
150
16k
How to train your dragon (web standard)
notwaldorf
97
6.4k
Evolution of real-time – Irina Nazarova, EuRuKo, 2024
irinanazarova
9
1k
Agile that works and the tools we love
rasmusluckow
331
21k
For a Future-Friendly Web
brad_frost
180
10k
Practical Orchestrator
shlominoach
190
11k
What's in a price? How to price your products and services
michaelherold
246
12k
GitHub's CSS Performance
jonrohan
1032
470k
How STYLIGHT went responsive
nonsquared
100
5.9k
Navigating Team Friction
lara
190
15k
Easily Structure & Communicate Ideas using Wireframe
afnizarnur
194
16k
The Straight Up "How To Draw Better" Workshop
denniskardys
239
140k
Transcript
্ౡݡ࢜ʢ4BUPTIJ6&+*."ʣ ੍ཧʢ5P$ʣೖ ߨࢣɿݪ༎ޔʢ:VHP,6;6)"3"ʣ
גࣜձࣾϦΫϧʔτ ൢଅྖҬ։ൃσΟϨΫγϣϯϢχοτ ॅ·͍ྖҬ୲ ݉ ࣄۀ։ൃྖҬ୲ ෦ ্ౡ ݡ࢜ʢSatoshi
UEJIMAʣ ▪ܦྺ 2007ɿେखSIer ɹ৽ଔೖࣾ 2013ɿגࣜձࣾϦΫϧʔτςΫϊϩδʔζɹೖࣾ 2015ɿגࣜձࣾϦΫϧʔτςΫϊϩδʔζ ΤϯδχΞϦϯάGɹάϧʔϓϚωʔδϟʔ 2016ɿಉ্ɹ݉ɹגࣜձࣾϦΫϧʔτϚʔέςΟϯάύʔτφʔζ 2017ɿಉ্ɹ݉ɹגࣜձࣾϦΫϧʔτॅ·͍Χϯύχʔ 2019ɿגࣜձࣾϦΫϧʔτςΫϊϩδʔζ ϥΠϑΠϕϯτྖҬΤϯδχΞϦϯά෦ɹ෦ ɹɹɹɹɹ݉ɹגࣜձࣾϦΫϧʔτॅ·͍Χϯύχʔ 2020ɿגࣜձࣾϦΫϧʔτ ॅ·͍ྖҬΤϯδχΞϦϯά෦ɹ෦ ɹɹɹɹɹ݉ɹॅ·͍ྖҬ։ൃσΟϨΫγϣϯ෦ 2022ɿגࣜձࣾϦΫϧʔτ ൢଅྖҬʢॅ·͍ɾM&FɾࣗಈंɾཱྀߦʣΤϯδχΞϦϯά෦ɹ෦ ɹ݉ɹॅ·͍ྖҬ։ൃσΟϨΫγϣϯ෦ 2023ɿגࣜձࣾϦΫϧʔτ ॅ·͍ྖҬ։ൃσΟϨΫγϣϯ෦ɹ෦ ɹ݉ɹࣄۀ։ൃྖҬ։ൃσΟϨΫγϣϯ෦ ɹɹɹɹ ݉ɹ৽نࣄۀ։ൃࣨ
גࣜձࣾϦΫϧʔτ ൢଅྖҬΤϯδχΞϦϯάϢχοτ ॅ·͍ϓϩμΫτ։ൃ1άϧʔϓ GM ᷤݪ ༎ޔʢYugo KUZUHARAʣ ▪ܦྺ
2012ɿגࣜձࣾϦΫϧʔτ ɹ৽ଔೖࣾɹHRྖҬʢϦΫφϏɺϦΫφϏNEXT etc.ʣ 2013ɿגࣜձࣾϦΫϧʔτςΫϊϩδʔζɹAdvanced Technology Lab 2015ɿಉ্ɹֶͼྖҬʢݱελσΟαϓϦখֶߨ࠲ɾதֶߨ࠲ʣ 2016ɿגࣜձࣾϦΫϧʔτϗʔϧσΟϯάεɹάϩʔόϧൢଅɹQuandoo 2017ɿגࣜձࣾϦΫϧʔτςΫϊϩδʔζɹॅ·͍ྖҬ 2022ɿגࣜձࣾϦΫϧʔτ ॅ·͍ྖҬɹGM ݱࡏʹࢸΔ
"HFOEB 1. ੍ཧʢTOCʣͱ 2. اۀͷΰʔϧʢඪʣͱ 3. ੍ʢϘτϧωοΫʣͱεϧʔϓοτ 4. όοναΠζͱϦʔυλΠϜ 5.
ιϑτΣΞ։ൃݱͰͷ 6. ·ͱΊ
50$ʢ5IFPSZPG$POTUSBJOUTɿ੍ཧʣͱ ΠεϥΤϧͷཧֶऀΤϦϠϑɾΰʔϧυϥοτത࢜ʹΑͬͯఏএ͞Εͨ ੜ࢈ཧܦӦͷશମ࠷దԽͷվળख๏ “ͲΜͳγεςϜͰ͋Εɺৗʹ͘͝গͷཁૉ/ҼࢠʹΑͬͯɺ ͦͷతୡʹ͚ͨύϑΥʔϚϯε੍͕ݶ͞Ε͍ͯΔ” “੍ʹϑΥʔΧεͯ͠ղܾΛߦ͑ɺখ͞ͳมԽͱ খ͞ͳྗͰ࣌ؒͷ͏ͪʹஶ͍͠Ռ͕ಘΒΕΔ” ※ຊݚमͰΰʔϧυϥοτത࢜ͷஶॻʮβɾΰʔϧʯͷΤοηϯεͷհͱɺ
ιϑτΣΞ։ൃͷݱʹ͓͚ΔྫΛަ͑ͨઆ໌Λ͍͖ͯ͠·͢ɻ
اۀͷΰʔϧʢඪʣͱ ʰ͓ۚΛṶ͚ଓ͚Δ͜ͱʱ
اۀͷΰʔϧʢඪʣͱ ʰ͓ۚΛṶ͚ଓ͚Δ͜ͱʱ ܦӦͷࢦඪ • ७རӹ • ࢿճऩ • Ωϟογϡϑϩʔ ݱͷࢦඪ
ʁʁʁ
اۀͷΰʔϧʢඪʣͱ ܦӦͷࢦඪ • ७རӹ • ࢿճऩ • Ωϟογϡϑϩʔ ݱͷࢦඪ •εϧʔϓοτɿൢചʢNot
ੜ࢈ʣΛ௨͓ͯۚ͡Λ࡞Γग़ׂ͢߹ •ࡏݿɿൢച͠Α͏ͱ͢ΔΛߪೖ͢ΔͨΊʹࢿͨ͠શͯͷ͓ۚ •ۀඅ༻ɿࡏݿΛεϧʔϓοτʹม͑ΔͨΊʹඅ͓ۚ͢ ʰ͓ۚΛṶ͚ଓ͚Δ͜ͱʱ
੍ʢϘτϧωοΫʣͱεϧʔϓοτ • ϋΠΩϯά • ͱ͋Δ • ܧଓվળʹ͚ͨ5εςοϓ
ϋΠΩϯάʢୂྻΛΈతΛࢦ͢ʣ
ྻͷ͕͞ͲΜͲΜ͘ͳΔ ͠Β͘͢Δͱʜ
ґଘతࣄʢͭͳ͕Γʣ 8km/࣌ͷೳྗ 3km/࣌ͷೳྗ ͨͱ͑8km/࣌Ͱา͚ͨͱͯ͠ɺ લͷΧΤϧ͕3km/͔࣌͠า͚ͳ͚Ε 1࣌ؒʹ3km͔͠ਐΉ͜ͱ͕Ͱ͖ͳ͍ ʢ͘ਐΉʹ੍ݶ͕͋Δʣ ౷ܭతมಈʢΒ͖ͭʣ ฏۉ3km/࣌
ۺඥΛͨ͠Γɺ͵͔ΔΈΛආ͚ͨΓͰ 2km/࣌ͰਐΉ͜ͱ͋Εɺલͱͷڑ ΛॖΊΔͨΊʹ4km/࣌ͰਐΉ͜ͱ͋Δ ʢਐΉ͞ʹόϥ͖͕ͭ͋Δʣ ౷ܭతมಈͱґଘతࣄ
౷ܭతมಈͱґଘతࣄ ͘า͘ ʢ= มಈʣ ۺඥ݁ͿͨΊʹ ࢭ·Δ ʢ= มಈʣ ࢭ·Δ ͘า͘
͘า͘ า͘ ʢ3km/࣌ʣ ґଘ ґଘ ґଘ ͘ਐΉʹ੍ݶ͕͋Δ͕ɺ͘ਐΉʹ੍ݶ͕ແ͍ͨΊɺୂྻແ੍ݶʹ͘ͳ͍ͬͯ͘ɻ Ұ͘ͳͬͯ͠·ͬͨୂྻΛݩͷ͞ʹͨ͢ΊʹɺޙΖΛา͘શͯͷΧΤϧ͕ ࣗͷલʹִ͕ͬͨؒͷ߹ܭʢมಈͷੵʣΛઌ಄ͷΧΤϧͷฏۉΑΓ͘า͘ඞཁ͕͋Δɻ มಈʹΑΓִ͕ͬͨؒ
ྻͷ͕͞ͲΜͲΜ͘ͳΔ ͠Β͘͢Δͱʜʢ࠶ܝʣ ʢগ͠ϦΧόϦʣ ʢલ͕͍ͷͰ ͍ൈ͔ͨ͠ʣ ※า͘ͷ͕ Ұ൪͍
ʲࡐྉͷೖʳ ʲͷൢചʳ εϧʔϓοτʢ ↘︎ ʣ ྻͷ͞ = ࡏݿʢ ↗︎ ʣ
า͘ͷʹඞཁͳΤωϧΪʔ = ۀඅ༻ʢ ↗︎ ʣ ͜ͷୂྻΛʮา͍ͨಓʯͱ͍͏Λ࡞͍ͬͯΔͱΈͳ͢ͱɺઌ಄͕ະ౿ͷಓΛา͘ = ੜ࢈Λ։࢝ɺ ࠷ޙඌ͕า͍ͯ͡Ί͕ͯൢച͞ΕΔ͜ͱʹͳΔɻΑͬͯɺ࠷ޙඌͷา͘εϐʔυ = εϧʔϓοτɻ ઌ಄͕า͖࢝Ίɺ࠷ޙඌ͕า͖ऴΘΔ·Ͱͷಓֻ෦ͷࡏݿʹͳΔɻ ੍ʢϘτϧωοΫʣͱεϧʔϓοτ
ʲࡐྉͷೖʳ ʲͷൢചʳ ※า͘ͷ͕ Ұ൪͍ ੍ݶ ୂྻશମͷεϧʔϓοτΛܾΊ͍ͯΔ = ੍ʢϘτϧωοΫʣ ੍ʢϘτϧωοΫʣҎ֎ͷϓϩηεͷೳྗΛ্ͤͯ͞εϧʔϓοτͷ૿Ճʹد༩͠ͳ͍ɻ ͦΕͲ͜Ζ͔ɺࡏݿۀඅ༻Λ૿Ճͤ͞ΩϟογϡϑϩʔͷѱԽΛͨΒ͢߹͋Δɻ
੍ʢϘτϧωοΫʣʹ͚ͩϑΥʔΧεͯ͠ରॲ͍ͯ͘͜͠ͱ͕શମ࠷దΛͨΒ͢ɻ ੍ʢϘτϧωοΫʣͱεϧʔϓοτ
ྻͷ͞ = ࡏݿʢ ↘︎ ʣ ୂྻͷઌ಄ ୂྻશମͷΛҰ൪า͘ͷ͕͍ΧΤϧʹैΘͤΔ͜ͱͰྻ͕͘ͳͬͯ͠·͏͜ͱΛ੍ɻ ͔͠͠ɺεϧʔϓοτΛ্͛ΔͨΊʹɺઌ಄ͷΧΤϧͷεϐʔυΛԿʹ্͛Δ͔͕伴ɻ ͍ ͓ͦ
Α པΉ ੍ʹଞΛैଐͤ͞Δ ੍ʢϘτϧωοΫʣͱεϧʔϓοτ
ෛՙʢॏ͍ՙʣΛࢄ = UP εϧʔϓοτʢ ↗︎ ʣ ੍ʢϘτϧωοΫʣͷෛՙΛܰͯ͘͠ೳྗΛ্ͤͨ͜͞ͱʹΑΓεϧʔϓοτ্͕ͨ͠ɻ ੍ͱͦΕҎ֎ʢඇ੍ʣͷ۠ผΛ͚ͭΔ͜ͱ͕ॏཁɻΤϦϠϑɾΰʔϧυϥοτࢯᐌ͘ɺ ʰ੍ͱඇ੍ͷ۠ผΛ͍ܽͨԿͳΔྗܾ࣮ͯ͠Λ݁ͳ͍ʱ ੍ʢϘτϧωοΫʣͱεϧʔϓοτ
ʢඇ੍ϦιʔεͰ੍ ϦιʔεΛॿ͚Δ͜ͱͰʣ ੍ͷੑೳΛ্͛Δ
੍ʢϘτϧωοΫʣͱεϧʔϓοτ • ϋΠΩϯά • ͱ͋Δ • ܧଓվળʹ͚ͨ5εςοϓ
ͱ͋Δʢػց ਓखͰϞϊΛ࡞Δʣ ʮࠓͷ࣌·Ͱʹݸ࡞ͬͯग़ՙͤΑʯ 12࣌ 13࣌ 14࣌ 15࣌ 16࣌ 17࣌ Έཱͯ
25ݸ Έཱͯ 25ݸ Έཱͯ 25ݸ Έཱͯ 25ݸ ग़ՙ 100ݸ Έཱͯɾ ༹ࡁΈ ༹ 25ݸ ༹ 25ݸ ༹ 25ݸ ༹ 25ݸ Έཱͯʢฏۉ25ݸ/࣌ʣ ༹ʢฏۉ25ݸ/࣌ʣ ग़ՙ·ͰͷఔʮΈཱͯʯͱʮ༹ʯͷΈɻ ֤ఔͷฏۉॲཧྔ͔Βܭࢉ͢Δͱ17࣌·Ͱʹ100ݸ࡞Δ͜ͱ͕Ͱ͖Δͣ…
ͱ͋Δʢػց ਓखͰϞϊΛ࡞Δʣ ʮࠓͷ࣌·Ͱʹݸ࡞ͬͯग़ՙͤΑʯ 12࣌ 13࣌ 14࣌ 15࣌ 16࣌ 17࣌ Έཱͯ
2519ݸ Έཱͯ 2521ݸ Έཱͯ 2528ݸ Έཱͯ 2532ݸ ग़ՙ 10090ݸ Έཱͯɾ ༹ࡁΈ ༹ 2519ݸ ༹ 2521ݸ ༹ 25ݸ ༹ 25ݸ Έཱͯʢฏۉ25ݸ/࣌ʣ ༹ʢฏۉ25ݸ/࣌ʣ ΈཱͯఔʹΒ͖ͭʢ౷ܭతมಈʣ͕͋Γɺͦ͜ʹͭͳ͕Γʢґଘతࣄʣͷ͋Δ༹ఔʹ • 12࣌ͱ13࣌ɿॲཧೳྗΑΓগͳ͍෦͔͠ྲྀΕͯ͜ͳ͔ͬͨɻ • 14࣌ͱ15࣌ɿॲཧೳྗΛ͑ͨ෦͕ྲྀΕ͖͕ͯͨɺաॲཧͰ͖ͳ͔ͬͨɻ
ᶃ੍ʢϘτϧωοΫʣΛൃݟ͢Δ ॲཧೳྗɿ100 Քಇɿ100% ఔA ఔB ఔC ఔD ࡏݿɿ30 ࢿࡐೖ 100
ࡏݿɿ20 ग़ՙ 48 ॲཧೳྗɿ80 Քಇɿ100% ॲཧೳྗɿ60 Քಇɿ80% ॲཧೳྗɿ100 Քಇɿ48%
ग़ՙ 48 ॲཧೳྗɿ60 Քಇɿ80% ॲཧೳྗɿ100 Քಇɿ48% ᶃ੍ʢϘτϧωοΫʣΛൃݟ͢Δ ఔA ఔB ఔC
ఔD ࡏݿɿ32 ࢿࡐೖ 100 ࡏݿɿ20 ੍ʢϘτϧωοΫʣ εϧʔϓοτΛܾΊ͍ͯΔ ॲཧೳྗɿ100 Քಇɿ100% ॲཧೳྗɿ80 Քಇɿ100%
ग़ՙ 48 ॲཧೳྗɿ60 Քಇɿ80% ॲཧೳྗɿ100 Քಇɿ48% ఔA ఔB ఔC ఔD
ࢿࡐೖ 100 ࡏݿɿ20 ᶄ੍ʢϘτϧωοΫʣΛ࠷େ׆༻͢Δ Ճࢿͷલʹ·ͣపఈతʹ׆༻͢Δํ๏Λߟ͑Δ • Քಇ͕80%→100%Λࢦ͢ • ͍·ඞཁͳϞϊ͚ͩ࡞Δ • Bఔͷෛՙࢄ ࠷େ׆༻Λߟ͑Δ ॲཧೳྗɿ100 Քಇɿ100% ॲཧೳྗɿ80 Քಇɿ100% ࡏݿɿ32
ग़ՙ 60 ॲཧೳྗɿ60 Քಇɿ100% ॲཧೳྗɿ100 Քಇɿ60% ఔA ఔB ఔC ఔD
ࡏݿɿ8 ࢿࡐೖ 100 ࡏݿɿ32 ᶄ੍ʢϘτϧωοΫʣΛ࠷େ׆༻͢Δ ͜͏ͳΔͣ -24 +12 ඇ੍Λ੍ͷೳྗΛ͑ͯಇ͔͍ͤͯΔͨΊൃੜ͢Δ༨ࡏݿ →ɹݮΒ͍ͨ͠ʢҰఆͷόοϑΝඞཁ͚ͩͲʣ ʢඇ੍ϦιʔεͰ੍ϦιʔεΛॿ͚Δ͜ͱͰʣ ੍ͷੑೳΛ্͛Δ ॲཧೳྗɿ100 Քಇɿ100% ॲཧೳྗɿ80 Քಇɿ85%
ఔA ఔB ఔC ఔD ग़ՙ 60 ࢿࡐೖ 100→ 80 ᶅଞͷܾఆΛ੍ʢϘτϧωοΫʣʹैΘͤΔ
ϘτϧωοΫʹ߹Θͤͯࢿࡐೖ ※όοϑΝʢࡏݿɾظؒʣߟྀ ੍ʹଞΛैଐͤ͞Δ ࡏݿɿ8 ࡏݿɿ12 ॲཧೳྗɿ60 Քಇɿ100% ॲཧೳྗɿ100 Քಇɿ60% ॲཧೳྗɿ100 Քಇɿ80% ॲཧೳྗɿ80 Քಇɿ85% -20 ࡏݿͷݮগ = ΩϟογϡϑϩʔͷྑԽ
ఔA ఔB ఔC ఔD ग़ՙ 60 • ઃඋࢿ • ࡞ۀվળ
• ఔվળ ᶆ੍ͷೳྗΛߴΊΔ ࢿࡐೖ 80→ 90 Ͳ͏ͳΔ͔ʁ +10 +30ʁ Ϝμ͕࠷খԽ͞Εͨঢ়ଶͰɺࢿʹΑΓϘτϧωοΫͷೳྗ্ = εϧʔϓοτ্Λૂ͏ɻ ॲཧೳྗɿ80→90 ॲཧೳྗɿ100 ॲཧೳྗɿ100 ॲཧೳྗɿ80
ఔA ఔB ఔC ఔD ग़ՙ 68 ࡏݿɿ8 ࡏݿɿ22 ॲཧೳྗɿ90 Քಇɿ75.5%
ॲཧೳྗɿ100 Քಇɿ68% ॲཧೳྗɿ100 Քಇɿ90% ॲཧೳྗɿ80 Քಇɿ85% ᶇ੍͕ղফͨ͠Βᶃ੍Λݟ͚ͭΔɺʹΔ ࢿࡐೖ 80→ 90 +10 ੍ʢϘτϧωοΫʣ +8 ੍͕ҠΔͱγεςϜҎલͱશ͘ผʹͳΓɺݹ͍ํࣗମ੍͕ʹͳΔɻ ˞ଦੑʹؾΛ͚ͭͯܧଓతʹվળ͢Δඞཁ͕͋Δɻ
੍ʢϘτϧωοΫʣͱεϧʔϓοτ • ϋΠΩϯά • ͱ͋Δ • ܧଓվળʹ͚ͨ5εςοϓ
'PDVTJOH4UFQT ᶅ ଞͷશͯΛᶄͷܾఆʹ ैଐͤ͞Δ ᶆ ੍ͷೳྗΛߴΊΔ ᶄ ੍ΛͲ͏పఈ׆༻ ͢Δ͔ܾΊΔ ᶇ
੍͕ղফͨ͠Β ᶃʹΔ ᶃ ੍Λݟ͚ͭΔ
੍ͷλΠϓɾಛ ཧత੍ ࢢͷ੍ ํͷ੍ ஔઃඋɺਓతϦιʔεʹىҼ͢Δͷ धཁސ٬ͳͲͷࢢཁૉʹىҼ͢Δͷ ձࣾͷํ׳शʹىҼ͢Δͷ ※ѹతʹ͜ͷ੍͕ଟ͍ʂ ੍ͷಛ ✓
ࡏݿ͕ཷ·Δ ✓ ॲཧ͕͍࣌ؒ ✓ τϥϒϧ͕ଟ͍ ✓ Քಇߴ͍
੍ͷλΠϓɾಛ ཧత੍ ࢢͷ੍ ํͷ੍ ஔઃඋɺਓతϦιʔεʹىҼ͢Δͷ धཁސ٬ͳͲͷࢢཁૉʹىҼ͢Δͷ ձࣾͷํ׳शʹىҼ͢Δͷ ※ѹతʹ͜ͷ੍͕ଟ͍ʂ ੍ͷಛ ✓
ࡏݿ͕ཷ·Δ ✓ ॲཧ͕͍࣌ؒ ✓ τϥϒϧ͕ଟ͍ ✓ Քಇߴ͍ 㾎੍ʮѱʯͰͳ͘ʮࣄ࣮ʯ 㾎Ѳͯ͠ίϯτϩʔϧ͢Δ͜ͱ͕େࣄ
όοναΠζͱϦʔυλΠϜ • Ұճ͋ͨΓͷॲཧྔͷ͜ͱΛʮόονʯ • όονͷେ͖͞ΛʮόοναΠζʯ • όοναΠζΛখ͘͢͞Δ͜ͱͰϦʔυλΠϜ͕͘ͳΔ = εϧʔϓοτ্͕͕Δʢ߹͕͋Δʣ
࡞ۀͷྲྀΕ ଟ͘ͷ࡞ۀ ʮᶃηοτΞοϓλΠϜʢஈऔΓͷ࣌ؒʣ→ᶄϓϩηελΠϜʢॲཧͷ࣌ؒʣ → ᶅΩϡʔλΠϜ&ΣΠτλΠϜʢ࡞ۀͪͷ࣌ؒʣʯͷ࿈ଓ ※ͦͯ͠େମʹ͓͍ͯʮΩϡʔλΠϜ&ΣΠτλΠϜʯ͕͔͔͘Γ͕ͪɺͱ͞Ε͍ͯΔ ᶃηοτΞοϓλΠϜ
ʢόοναΠζʹΑΔมಈͳ͠ʣ ᶄϓϩηελΠϜ ʢόοναΠζͰมಈʣ ᶅΩϡʔλΠϜ&ΣΠτλΠϜ ʢόοναΠζͰมಈʣ ఔA ఔB ఔC
όοναΠζʹΑΔ-5ൺֱʢྫʣ ŰƄŕŧšŘţƄ:1 ఔA ఔB ఔC ఔA ఔB ఔC ఔA ఔB
ఔC ఔA ఔB ఔC ఔA ఔB ఔC ŰƄŕŧšŘţƄ:5 ఔA ఔB ఔC 5ݸ·ͰͷϦʔυλΠϜ͕͍ = εϧʔϓοτߴ͍
όοναΠζখͯ͘͞-5͕͘ͳΒͳ͍͜ͱ ✓ େ͖ͳόονͰେྔʹॲཧͨ͠ํ͕ϓϩηελΠϜ͕͘ͳΔ߹ → ಉ࣌ฒߦͰେྔੜ࢈Ͱ͖ΔػցΛಋೖ͢ΔͳͲʢਓखͩͱجຊ1͔ͭͣͭ͠ॲཧͰ͖ͳ͍ʣ ✓ ʮηοτΞοϓλΠϜʯ͕େ͖͍߹ όοναΠζʹΑΔมಈ͕ແ͘
όον૿ʹΑΔΦʔόʔϔουେ
όοναΠζΛখ͘͢͞ΔϝϦοτᶃ •࡞ۀ͕࣌ؒ͘ͳΔʢ߹͕͋Δʣ • ૣظʹग़ՙ͢Δ͜ͱͰࠜઇߏతʹࣄۀՁͷੵͷ࠷େԽʹد༩͢Δʢ߹͕͋Δʣ ※ηοτΞοϓλΠϜ͕খ͍͞ɺ·ͨेʹখ͘͢͞Δ͜ͱ͕ՄೳͰ͋Ε༗ޮ ʢͦ͏Ͱͳ͚Εɺେ͖ͳόονͰਐΊͯ͠·͏ํ͕͍͍ʣ
ϜμʹͳΔྔ͕ଟ͍ όοναΠζΛখ͘͢͞ΔϝϦοτᶄ •ෆ࣮֬ੑʹΑΔϜμΛগͳ͘͢Δ ɹ - ϛεෆ۩߹ɺೝࣝҧ͍ɺఆ֎ͷࣄͳͲΛૣظʹݕ͢Δ͜ͱͰɺϜμΛ࠷খԽ͢Δ ※ඇఆܕ࡞ۀɺ৽͍͠औΓΈɺ࣭తͳΒ͖ͭɺ࣮ݧతཁૉ͕ڧ͍ͳͲͷ߹༗ޮ ʢෆ࣮֬ੑ͕͚͘Εେ͖ͳόονͰਐΊͯ͠·͏ํ͕ྑ͍ʣ
ιϑτΣΞ։ൃݱͷ ࠇాथ / ࣄۀՁͱΤϯδχΞϦϯάɾϦιʔεޮੑͱϑϩʔޮੑ ࠇా͞Μࢿྉͷ͜ͷΜͷ
ιϑτΣΞ։ൃݱͷ ࠇాथ / ࣄۀՁͱΤϯδχΞϦϯάɾϦιʔεޮੑͱϑϩʔޮੑ ࠇా͞Μࢿྉͷ͜ͷΜͷ ྫʣCSΞΫγϣϯ࠷େԽΛ͍ͯ͘͠ϓϩμΫτνʔϜ ʮεϧʔϓοτʯʮࡏݿʯʮۀඅ༻ʯΛܭଌɾϞχλϦϯά ※εϧʔϓοτՁΛࢢʹఏڙ͢Δ·Ͱʢto CashʣͳͷͰɺ
։ൃ͚ͩͰͷܭଌͰͳ͘ʮاը~։ൃ~ݕূʯʢBMLαΠΫϧʣͷશମΛର
ιϑτΣΞ։ൃݱͷ ͱ͋ΔϓϩμΫτνʔϜ ੍ʢϘτϧωοΫʣ
ιϑτΣΞ։ൃݱͷ ੍ʢϘτϧωοΫʣ @xxxxxxxxxx @zzzzzzzzzz @aaaaaaaaa @xxxxxxxxxx @yyyyyyyyyy @aaaaaaaaa @xxxxxxxxxx
ιϑτΣΞ։ൃݱͷ
ιϑτΣΞ։ൃݱͷ Before Now ݕূ໘ͷʮՔಇʯՄࢹԽ
ιϑτΣΞ։ൃݱͷ Before Now ʮݕূʯʹ߹Θͤͨணख • ݕূͷੑೳΛ͑ͯணख͠ͳ͍ • ʢٯʹʣݕূ໘͕ۭ͔ͳ͍Α͏ʹ ɾ80ˋͷਫ४Ͱݕূ໘Λ׆༻ ɾϦϦʔεͪͷݮগ
ιϑτΣΞ։ൃݱͷ Before Now ʮݕূʯʹ߹Θͤͨணख • ݕূͷੑೳΛ͑ͯணख͠ͳ͍ • ʢٯʹʣݕূ໘͕ۭ͔ͳ͍Α͏ʹ ɾ80ˋͷਫ४Ͱݕূ໘Λ׆༻ ɾϦϦʔεͪͷݮগ
ݕূ໘ʢը໘ʣͷՃ։ൃ
ιϑτΣΞ։ൃݱͷ Before Now ʮݕূʯʹ߹Θͤͨணख • ݕূͷੑೳΛ͑ͯணख͠ͳ͍ • ʢٯʹʣݕূ໘͕ۭ͔ͳ͍Α͏ʹ ɾ80ˋͷਫ४Ͱݕূ໘Λ׆༻ ɾϦϦʔεͪͷݮগ
ݕূ໘ʢը໘ʣͷՃ։ൃ ᶅ ଞͷશͯΛᶄͷܾఆ ʹैଐͤ͞Δ ᶆ ੍ͷೳྗΛߴΊΔ ᶄ ੍ΛͲ͏పఈ׆༻ ͢Δ͔ܾΊΔ ᶇ ੍͕ղফͨ͠Β ᶃʹΔ ᶃ ੍Λݟ͚ͭΔ
ιϑτΣΞ։ൃݱͷ Before Now ʮݕূʯʹ߹Θͤͨணख • ݕূͷੑೳΛ͑ͯணख͠ͳ͍ • ʢٯʹʣݕূ໘͕ۭ͔ͳ͍Α͏ʹ ɾ80ˋͷਫ४Ͱݕূ໘Λ׆༻ ɾϦϦʔεͪͷݮগ
ݕূ໘ʢը໘ʣͷՃ։ൃ ᶅ ଞͷશͯΛᶄͷܾఆ ʹैଐͤ͞Δ ᶆ ੍ͷೳྗΛߴΊΔ ᶄ ੍ΛͲ͏పఈ׆༻ ͢Δ͔ܾΊΔ ᶇ ੍͕ղফͨ͠Β ᶃʹΔ ᶃ ੍Λݟ͚ͭΔ ܧଓతվળαΠΫϧΛճͯ͠ Ҋ݅LT͓Αͦ30%ॖʂʂ
ιϑτΣΞ։ൃݱͷ λεΫA λεΫB λεΫC λεΫD λεΫE λεΫF λεΫG ϓϩδΣΫτόοϑΝ ΫϦςΟΧϧνΣʔϯ
ʢ࡞ۀఔͷैଐؔͱϦιʔεͷैଐؔͷ྆ํΛߟྀʹೖΕͯɺ ࡞ۀॴཁظؒΛܾΊ͍ͯΔ࠷͍࡞ۀͷྲྀΕʣ όοϑΝλεΫຖͰͳ͘PJશମͱͯ࣋ͪ͠ɺ ΫϦςΟΧϧνΣʔϯ্ͷλεΫʹԆ͕ൃੜͨ͠ࡍʹऔΓ่͢
ιϑτΣΞ։ൃݱͷ ϜμΛݮΒͨ͠Γ੍ͷೳྗUPͨ͠Γ͢ΔHowୡ https://shop.ohmsha.co.jp/shopdetail/000000004967/ https://www.amazon.co.jp/Devops-Handbook-World- Class-Reliability-Organizations/dp/1942788002 https://www.slideshare.net/andrefaria/mob-programming
·ͱΊ 㾎اۀͷΰʔϧ͓ۚΛ͚ଓ͚Δ͜ͱ 㾎εϧʔϓοτɾࡏݿɾۀඅ༻ 㾎౷ܭతมಈʢΒ͖ͭʣͱґଘతࣄʢͭͳ͕ΓʣͷΈ߹Θͤ 㾎੍ʢϘτϧωοΫʣ͕શମͷεϧʔϓοτΛܾΊΔ 㾎੍ͱඇ੍Λ۠ผͯ͠ɺ੍ʹ͚ͩϑΥʔΧε 㾎ʰ੍ͱඇ੍ͷ۠ผΛ͍ܽͨԿͳΔྗܾ࣮ͯ͠Λ݁ͳ͍ʱ 㾎ଦੑʹؾΛ͚ͭͯܧଓతʹվળ͢Δʢ'PDVTJOH4UFQTʣ 㾎ʰ੍͕ҠΔͱγεςϜҎલͱશ͘ผʹͳΓɺݹ͍ํࣗମ੍͕ʹͳΔʱ 㾎੍ʮѱʯͰͳ͘ʮࣄ࣮ʯɻίϯτϩʔϧ͢Δ͜ͱ͕େࣄɻ
㾎όοναΠζΛখ͘͢͞ΔͱϦʔυλΠϜ͕͘ͳΔεϧʔϓοτ͕͋Δ 㾎࡞ۀ͕࣌ؒ͘ͳΔʢ߹͕͋Δʣɻ 㾎ෆ࣮֬ੑʹΑΔϜμ͕ݮΔɻ
·ͱΊ ΰʔϧυϥοτത࢜ᐌ͘ ʮ50$ΛҰݴͰݴ͑ͱ͍͏ͳΒɺͦΕʮϑΥʔΧεʯ ͩɻ͔͠͠ɺେࣄͳͷɺϑΥʔΧε͢ΔͱɺԿΛ͢ ͖͔͍ͬͯΔͱಉ࣌ʹɺԿΛ͖͢Ͱͳ͍͔ͬͯ ͍Δͱ͍͏͜ͱͩɻͳͥͳΒɺͯ͢ʹϑΥʔΧε͢Δ ͷɺͲΕʹϑΥʔΧε͠ͳ͍ͷͱಉ͔ͩ͡Βͩɻʯ
·ͱΊ 㸝ݸผ࠷దԽ㱠શମ࠷ద ΤϯδχΞϦϯάͰ੍Λίϯτϩʔϧͯ͠ ࣄۀՁΛߴΊ͍͖ͯ·͠ΐ͏