Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
高校講座 | 第3回 協調ベース推薦システム
Search
RecSysLab
PRO
August 06, 2022
Technology
0
450
高校講座 | 第3回 協調ベース推薦システム
下記教科書を基にした高校生向けの推薦システム講座の講義スライドです。
奥 健太:基礎から学ぶ推薦システム - 情報技術で嗜好を予測する -, コロナ社 (2022)
RecSysLab
PRO
August 06, 2022
Tweet
Share
More Decks by RecSysLab
See All by RecSysLab
データベース|SQL
recsyslab
PRO
0
88
龍谷ICT教育|プログラミング演習科目における自動採点ツールを用いた自由進度学習
recsyslab
PRO
0
140
[RecSys2023論文読み会]Interface Design to Mitigate Inflation in Recommender Systems
recsyslab
PRO
0
140
[RecSys2022論文読み会]Bundle MCR: Towards Conversational Bundle Recommendation
recsyslab
PRO
0
440
高校講座 | 第1回 推薦システムとは
recsyslab
PRO
0
510
高校講座 | 第2回 内容ベース推薦システム
recsyslab
PRO
0
470
内容ベース推薦システム | 第2回 推薦システム概論
recsyslab
PRO
0
790
協調ベース推薦システム | 第3回 推薦システム概論
recsyslab
PRO
0
790
知識ベース推薦システム | 第4回 推薦システム概論
recsyslab
PRO
0
720
Other Decks in Technology
See All in Technology
ロールが細分化された組織でSREと協働するインフラエンジニアは何をするか? / SRE Lounge #18
kossykinto
0
200
GMOペパボのデータ基盤とデータ活用の現在地 / Current State of GMO Pepabo's Data Infrastructure and Data Utilization
zaimy
3
210
OPENLOGI Company Profile for engineer
hr01
1
37k
2時間で300+テーブルをデータ基盤に連携するためのAI活用 / FukuokaDataEngineer
sansan_randd
0
140
AIのグローバルトレンド 2025 / ai global trend 2025
kyonmm
PRO
1
120
隙間時間で爆速開発! Claude Code × Vibe Coding で作るマニュアル自動生成サービス
akitomonam
3
250
Google Cloud で学ぶデータエンジニアリング入門 2025年版 #GoogleCloudNext / 20250805
kazaneya
PRO
18
4.1k
【新卒研修資料】数理最適化 / Mathematical Optimization
brainpadpr
25
12k
猫でもわかるQ_CLI(CDK開発編)+ちょっとだけKiro
kentapapa
0
3.4k
データモデリング通り #2オンライン勉強会 ~方法論の話をしよう~
datayokocho
0
130
人に寄り添うAIエージェントとアーキテクチャ #BetAIDay
layerx
PRO
9
2.1k
製造業の課題解決に向けた機械学習の活用と、製造業特化LLM開発への挑戦
knt44kw
0
160
Featured
See All Featured
CoffeeScript is Beautiful & I Never Want to Write Plain JavaScript Again
sstephenson
161
15k
Chrome DevTools: State of the Union 2024 - Debugging React & Beyond
addyosmani
7
790
10 Git Anti Patterns You Should be Aware of
lemiorhan
PRO
656
60k
Connecting the Dots Between Site Speed, User Experience & Your Business [WebExpo 2025]
tammyeverts
8
430
StorybookのUI Testing Handbookを読んだ
zakiyama
30
6k
Evolution of real-time – Irina Nazarova, EuRuKo, 2024
irinanazarova
8
880
A better future with KSS
kneath
239
17k
GitHub's CSS Performance
jonrohan
1031
460k
Embracing the Ebb and Flow
colly
86
4.8k
Understanding Cognitive Biases in Performance Measurement
bluesmoon
29
1.8k
Building a Modern Day E-commerce SEO Strategy
aleyda
43
7.4k
Designing Dashboards & Data Visualisations in Web Apps
destraynor
231
53k
Transcript
推薦システムの仕組み ~この商品を買った人は、こんな商品も買っています~ 高校講座 | 第3回 協調ベース推薦システム 奥 健太
シナリオ Aliceはとある寿司屋を訪れました。この寿司屋では、表に示すように、カツオ、マグロ、中 トロ、タイ、ヒラメ、スズキの6種類の寿司を提供しています。この寿司屋にはAlice、 Bruno、Chiara、Dhruv、Emiがよく訪れます。そして、寿司に対する好みを1から5の5段 階で評価しています。さて、Aliceはカツオとスズキを試したことがありません。果たして、 Aliceはカツオとスズキを好むでしょうか? ユーザ-寿司評価値行列 カツオ マグロ 中トロ
タイ ヒラメ スズキ Alice ? 5 4 1 2 ? Bruno 5 5 4 ? 3 3 Chiara 4 ? 5 2 1 ? Dhruv ? 4 ? 2 1 1 Emi 1 2 1 3 ? 3 2
ユーザ、アイテム、評価履歴 ユーザ: 推薦システムの利用者 アイテム:推薦システムにおいて扱う商品やコンテンツなど 評価値: ユーザのアイテムに対する好き嫌いの程度 ユーザ アイテム 評価値 1:
Alice 2: マグロ 5 1: Alice 3: 中トロ 4 1: Alice 4: タイ 1 1: Alice 5: ヒラメ 2 2: Bruno 1: カツオ 5 : : : 5: Emi 6: スズキ 3 評価履歴 3 評価履歴: ユーザがこれまで利用してきた アイテムに対して与えた評価値の履歴
1 Bruno Chiara Dhruv Emi カ ツ オ マ グ
ロ 中 ト ロ タ イ ヒ ラ メ ス ズ キ Alice 2 3 4 5 1 2 3 4 5 6 ? ? ? ? ? ? ? ? ユーザの評価履歴をベクトルで表そう Bruno Chiara Dhruv Emi 2 3 4 5 ? ? ? ? ? ? ベクトル*:数を縦または横に並べたもの Aliceのマグロに対する評価値 欠損値: Aliceが未評価 *数学B -> 数学C:ベクトル 評価値ベクトル:特定のユーザの評価履歴をベクトルで表したもの 4 ユーザ アイテム 評価値 1: Alice 2: マグロ 5 1: Alice 3: 中トロ 4 1: Alice 4: タイ 1 1: Alice 5: ヒラメ 2 2: Bruno 1: カツオ 5 : : : 5: Emi 6: スズキ 3 評価履歴
すべてのユーザの評価値ベクトルをつなげよう 1 Bruno Chiara Dhruv Emi カ ツ オ マ
グ ロ 中 ト ロ タ イ ヒ ラ メ ス ズ キ Alice 2 3 4 5 1 2 3 4 5 6 ? ? ? ? ? ? ? ? 行列*:数を縦と 横に並べたもの *数学C:数学的な表現の工夫 評価値行列:各ユーザの各アイテムに対する評価値を縦と横に並べたもの 5
問題 | Aliceはカツオを好む?スズキを好む? 欠損値 に入るべき評価値をどう求める? ? 1 Bruno Chiara Dhruv
Emi カ ツ オ マ グ ロ 中 ト ロ タ イ ヒ ラ メ ス ズ キ Alice 2 3 4 5 1 2 3 4 5 6 ? ? ? ? ? ? ? ? 6
案1 | Aliceの平均評価値で予測 1 Bruno Chiara Dhruv Emi カ ツ
オ マ グ ロ 中 ト ロ タ イ ヒ ラ メ ス ズ キ Alice 2 3 4 5 1 2 3 4 5 6 ? ? ? ? ? ? ? ? 3.0 7
案2 | カツオに対する平均評価値で予測 1 Bruno Chiara Dhruv Emi カ ツ
オ マ グ ロ 中 ト ロ タ イ ヒ ラ メ ス ズ キ Alice 2 3 4 5 1 2 3 4 5 6 ? ? ? ? ? ? ? ? 3.3 8
案3 | Aliceと好みが似ているユーザを参考にして予測 1 Bruno Chiara Dhruv Emi カ ツ
オ マ グ ロ 中 ト ロ タ イ ヒ ラ メ ス ズ キ Alice 2 3 4 5 1 2 3 4 5 6 ? ? ? ? ? ? ? ? 4.5 9
似ているユーザを探そう 10
AliceとBrunoの評価値の関係 0 1 5 2 3 4 1 5 2
3 4 Aliceの評価値 Brunoの評価値 マグロ 中トロ ヒラメ 正の相関* *数学I:データの分析 Aliceが高く評価しているアイテムは Brunoも高く評価している 1 Bruno カ ツ オ マ グ ロ 中 ト ロ タ イ ヒ ラ メ ス ズ キ Alice 2 1 2 3 4 5 6 ? ? ? 11
AliceとEmiの評価値の関係 0 1 5 2 3 4 1 5 2
3 4 Aliceの評価値 Emiの評価値 マグロ 中トロ タイ 負の相関* Aliceが高く評価しているアイテムは Emiは低く評価している 1 Emi カ ツ オ マ グ ロ 中 ト ロ タ イ ヒ ラ メ ス ズ キ Alice 5 1 2 3 4 5 6 ? ? ? *数学I:データの分析 12
評価値行列の平均中心化 ユーザによって評価基準が異なるため、ユーザごとの平均評価値よりも好 きか嫌いかをみる 平 均 3 4 3 2 2
1 Bruno Chiara Dhruv Emi カ ツ オ マ グ ロ 中 ト ロ タ イ ヒ ラ メ ス ズ キ Alice 2 3 4 5 1 2 3 4 5 6 ? ? ? ? ? ? ? ? カ ツ オ マ グ ロ 中 ト ロ タ イ ヒ ラ メ ス ズ キ 1 2 3 4 5 6 ? ? ? ? ? ? ? ? 13
AliceとBrunoは似ている? -2 +2 -1 0 +1 -2 +2 -1 0
+1 Aliceの評価値 Brunoの評価値 マグロ 中トロ ヒラメ 正の相関 AliceとBrunoの評価値の相関係数* ユーザ類似度 *数学I:データの分析 1 Bruno Alice 2 カ ツ オ マ グ ロ 中 ト ロ タ イ ヒ ラ メ ス ズ キ 1 2 3 4 5 6 ? ? ? 14
AliceとEmiは似ている? 0 Aliceの評価値 Emiの評価値 マグロ 中トロ タイ 負の相関 AliceとEmiの評価値の相関係数* ユーザ類似度
-2 +2 -1 0 +1 -2 +2 -1 0 +1 15 カ ツ オ マ グ ロ 中 ト ロ タ イ ヒ ラ メ ス ズ キ 1 2 3 4 5 6 1 Emi Alice 5 ? ? ? *数学I:データの分析
演習 | AliceとChiaraの評価値の相関係数 AliceとChiaraの評価値の相関係数* ユーザ類似度 ※計算してみよう(分数、平方根はそのままで良い) 16 1 Chiara Alice
3 カ ツ オ マ グ ロ 中 ト ロ タ イ ヒ ラ メ ス ズ キ 1 2 3 4 5 6 ? ? ? ? *数学I:データの分析
演習 | AliceとDhruvの評価値の相関係数 AliceとDhruvの評価値の相関係数* ユーザ類似度 ※計算してみよう(分数、平方根はそのままで良い) 17 1 Dhruv Alice
4 カ ツ オ マ グ ロ 中 ト ロ タ イ ヒ ラ メ ス ズ キ 1 2 3 4 5 6 ? ? ? ? *数学I:データの分析
Aliceと好みが似ているユーザは? ユーザ ユーザ類似度 Alice Bruno Chiara Dhruv Emi 類似ユーザ ユーザ類似度が
• 上位 k 人のユーザを選ぶ • しきい値以上のユーザを選ぶ 類似ユーザの選び方 1.000 Aliceと嗜好が類似するユーザ 18
嗜好を予測しよう 19
1 カ ツ オ マ グ ロ 中 ト ロ
タ イ ヒ ラ メ ス ズ キ 1 2 3 4 5 6 ? ? ? ? ? ? ? ? Aliceのカツオに対する嗜好を予測しよう +1 類似ユーザ 類似ユーザの嗜好を参考に、Aliceがカツオに対して、平均よりも好むか嫌 うかを予測 20 Bruno Chiara Dhruv Emi Alice 2 3 4 5
カ ツ オ マ グ ロ 中 ト ロ タ
イ ヒ ラ メ ス ズ キ 1 2 3 4 5 6 ? ? ? ? ? ? ? Aliceのカツオに対する評価値を予測しよう 元の平均評価値を足して、Aliceの評価基準で評価値を予測 平 均 3 4 3 2 2 1 Bruno Chiara Dhruv Emi カ ツ オ マ グ ロ 中 ト ロ タ イ ヒ ラ メ ス ズ キ Alice 2 3 4 5 1 2 3 4 5 6 ? ? ? ? ? ? ? +1 4 21
カ ツ オ マ グ ロ 中 ト ロ タ
イ ヒ ラ メ ス ズ キ 1 2 3 4 5 6 ? ? ? ? ? ? +1 演習 | Aliceのスズキに対する評価値 ※Aliceのスズキに対する評価値を計算してみよう 平 均 3 4 3 2 2 1 Bruno Chiara Dhruv Emi カ ツ オ マ グ ロ 中 ト ロ タ イ ヒ ラ メ ス ズ キ Alice 2 3 4 5 1 2 3 4 5 6 ? ? ? ? ? ? 4 22
嗜好予測の結果 Aliceはとある寿司屋を訪れました。この寿司屋では、表に示すように、カツオ、マグロ、中 トロ、タイ、ヒラメ、スズキの6種類の寿司を提供しています。この寿司屋にはAlice、 Bruno、Chiara、Dhruv、Emiがよく訪れます。そして、寿司に対する好みを1から5の5段 階で評価しています。さて、Aliceはカツオとスズキを試したことがありません。果たして、 Aliceはカツオとスズキを好むでしょうか? ユーザ-寿司評価値行列 カツオ マグロ 中トロ
タイ ヒラメ スズキ Alice ? 5 4 1 2 ? Bruno 5 5 4 ? 3 3 Chiara 4 ? 5 2 1 ? Dhruv ? 4 ? 2 1 1 Emi 1 2 1 3 ? 3 23 Aliceはカツオを好む 4 Aliceはスズキを嫌う 2