Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
高校講座 | 第2回 内容ベース推薦システム
Search
RecSysLab
PRO
August 06, 2022
Technology
0
500
高校講座 | 第2回 内容ベース推薦システム
下記教科書を基にした高校生向けの推薦システム講座の講義スライドです。
奥 健太:基礎から学ぶ推薦システム - 情報技術で嗜好を予測する -, コロナ社 (2022)
RecSysLab
PRO
August 06, 2022
Tweet
Share
More Decks by RecSysLab
See All by RecSysLab
データベース|SQL
recsyslab
PRO
0
98
龍谷ICT教育|プログラミング演習科目における自動採点ツールを用いた自由進度学習
recsyslab
PRO
0
150
[RecSys2023論文読み会]Interface Design to Mitigate Inflation in Recommender Systems
recsyslab
PRO
0
150
[RecSys2022論文読み会]Bundle MCR: Towards Conversational Bundle Recommendation
recsyslab
PRO
0
440
高校講座 | 第1回 推薦システムとは
recsyslab
PRO
0
550
高校講座 | 第3回 協調ベース推薦システム
recsyslab
PRO
0
480
内容ベース推薦システム | 第2回 推薦システム概論
recsyslab
PRO
0
840
協調ベース推薦システム | 第3回 推薦システム概論
recsyslab
PRO
0
820
知識ベース推薦システム | 第4回 推薦システム概論
recsyslab
PRO
0
740
Other Decks in Technology
See All in Technology
Contract One Engineering Unit 紹介資料
sansan33
PRO
0
13k
Codex 5.3 と Opus 4.6 にコーポレートサイトを作らせてみた / Codex 5.3 vs Opus 4.6
ama_ch
0
150
Webhook best practices for rock solid and resilient deployments
glaforge
1
290
Claude_CodeでSEOを最適化する_AI_Ops_Community_Vol.2__マーケティングx_AIはここまで進化した.pdf
riku_423
2
570
15 years with Rails and DDD (AI Edition)
andrzejkrzywda
0
190
AI駆動開発を事業のコアに置く
tasukuonizawa
1
200
仕様書駆動AI開発の実践: Issue→Skill→PRテンプレで 再現性を作る
knishioka
2
660
[CV勉強会@関東 World Model 読み会] Orbis: Overcoming Challenges of Long-Horizon Prediction in Driving World Models (Mousakhan+, NeurIPS 2025)
abemii
0
140
変化するコーディングエージェントとの現実的な付き合い方 〜Cursor安定択説と、ツールに依存しない「資産」〜
empitsu
4
1.4k
2026年、サーバーレスの現在地 -「制約と戦う技術」から「当たり前の実行基盤」へ- /serverless2026
slsops
2
250
ブロックテーマ、WordPress でウェブサイトをつくるということ / 2026.02.07 Gifu WordPress Meetup
torounit
0
190
茨城の思い出を振り返る ~CDKのセキュリティを添えて~ / 20260201 Mitsutoshi Matsuo
shift_evolve
PRO
1
300
Featured
See All Featured
We Are The Robots
honzajavorek
0
160
Money Talks: Using Revenue to Get Sh*t Done
nikkihalliwell
0
150
SEO for Brand Visibility & Recognition
aleyda
0
4.2k
Making Projects Easy
brettharned
120
6.6k
The Art of Delivering Value - GDevCon NA Keynote
reverentgeek
16
1.8k
Bridging the Design Gap: How Collaborative Modelling removes blockers to flow between stakeholders and teams @FastFlow conf
baasie
0
450
Java REST API Framework Comparison - PWX 2021
mraible
34
9.1k
Breaking role norms: Why Content Design is so much more than writing copy - Taylor Woolridge
uxyall
0
170
The untapped power of vector embeddings
frankvandijk
1
1.6k
Dominate Local Search Results - an insider guide to GBP, reviews, and Local SEO
greggifford
PRO
0
78
From Legacy to Launchpad: Building Startup-Ready Communities
dugsong
0
140
Between Models and Reality
mayunak
1
190
Transcript
推薦システムの仕組み ~この商品を買った人は、こんな商品も買っています~ 高校講座 | 第2回 内容ベース推薦システム 奥 健太
シナリオ Aliceはとあるカレー屋を訪れました。このカレー屋では、辛さと甘さの異なる8種類のカレーを提供して います。Aliceは、これまでに5種類のカレーを試してきました。そのうち、下表のように3種類のカレーを 「好き」、2種類のカレーを「嫌い」と評価してきました。評価値が「?」となっているカレーについて は、Aliceはまだ試していません。Aliceにはどのカレーを推薦するのが良いでしょうか? アイテムID アイテム名 辛さ 甘さ 評価値
1 5辛3甘 5 3 好き 2 4辛4甘 4 4 好き 3 3辛3甘 3 3 好き 4 2辛8甘 2 8 嫌い 5 4辛9甘 4 9 嫌い 6 3辛4甘 3 4 ? 7 1辛7甘 1 7 ? 8 8辛6甘 8 6 ? Aliceの評価履歴 2
ユーザ、アイテム、評価履歴 ユーザ: 推薦システムの利用者 アイテム:推薦システムにおいて扱う商品やコンテンツなど 評価値: ユーザのアイテムに対する好き嫌い 評価履歴: ユーザがこれまで利用してきた アイテムに対して与えた評価値の履歴 アイテムID
アイテム名 辛さ 甘さ 評価値 1 5辛3甘 5 3 好き 2 4辛4甘 4 4 好き 3 3辛3甘 3 3 好き 4 2辛8甘 2 8 嫌い 5 4辛9甘 4 9 嫌い 6 3辛4甘 3 4 ? 7 1辛7甘 1 7 ? 8 8辛6甘 8 6 ? Aliceの評価履歴 3
類似度に基づく推薦 4
アイテムを座標平面上に表してみよう アイテムID アイテム名 辛さ 甘さ 評価値 1 5辛3甘 5 3
好き 2 4辛4甘 4 4 好き 3 3辛3甘 3 3 好き 4 2辛8甘 2 8 嫌い 5 4辛9甘 4 9 嫌い 6 3辛4甘 3 4 ? 7 1辛7甘 1 7 ? 8 8辛6甘 8 6 ? 10 5 0 10 5 甘 さ 辛さ 1 2 3 4 5 6 7 8 5
10 5 0 10 5 甘 さ 辛さ 1 2
3 4 5 6 7 8 アイテムをベクトルで表すと便利 8辛6甘カレー 辛さ 甘さ *数学B -> 数学C:ベクトル ベクトル*: 数を縦または横に並べたもの 6
10 5 0 10 5 甘 さ 辛さ 1 2
3 Aliceの好みの辛さ、甘さは? 好みのアイテムのベクトルの平均 ユーザプロファイル ユーザの嗜好を表したもの 7
10 5 0 10 5 甘 さ 辛さ 6 7
8 問題 | Aliceはどれが好き? 8
10 5 0 10 5 甘 さ 辛さ 6 7
8 ベクトルのなす角を考えよう コサイン類似度 ベクトルのなす角* *数学II:三角関数、*数学B -> 数学C:ベクトル 9
10 5 0 10 5 甘 さ 辛さ 6 7
8 演習 | 他のコサイン類似度も計算してみよう 10
コサイン類似度が高いとどうなの? コサイン類似度が1に近いほど、二つのベクトルが同じ方向を向いている 類似している 11
10 5 0 10 5 甘 さ 辛さ 6 7
8 順位 アイテムID アイテム名 辛さ 甘さ 類似度 1位 8 8辛6甘 8 6 2位 6 3辛4甘 3 4 3位 7 1辛7甘 1 7 コサイン類似度でランキング Aliceには 8辛6甘カレーがおすすめ 12
k 近傍法 13
10 5 0 10 5 甘 さ 辛さ 1 2
3 4 5 6 7 8 近傍のアイテムから好き嫌いを予測してみよう このあたりは好き? このあたりは嫌い? 14
10 5 0 10 5 甘 さ 辛さ 1 2
3 4 5 7 近傍のアイテムはどれ? 15
10 5 0 10 5 甘 さ 辛さ 3 7
距離を考えよう 2点間の距離* *数学II:図形と方程式 16
10 5 0 10 5 甘 さ 辛さ 1 2
3 4 5 7 演習 | 他の距離も計算してみよう 17
10 5 0 10 5 甘 さ 辛さ 1 2
3 4 5 7 近傍 k 個のアイテムを見つけよう(k = 3) アイテムID アイテム名 辛さ 甘さ 距離 4 2辛8甘 2 8 5 4辛9甘 4 9 2 4辛4甘 4 4 3 3辛3甘 3 3 1 5辛3甘 5 3 18
10 5 0 10 5 甘 さ 辛さ 1 2
3 4 5 7 近傍 k 個のアイテムで多数決 好き × 1 vs. 嫌い × 2 Aliceは1辛7甘カレーが嫌い 19
10 5 0 10 5 甘 さ 辛さ 1 2
3 4 5 6 7 8 演習 | 他のアイテムの好き嫌いも予測してみよう 好き × 嫌い × 3辛4甘カレー 好き × 嫌い × 8辛6甘カレー 20
10 5 0 10 5 甘 さ 辛さ 1 2
3 4 5 6 7 8 k 近傍法でランキング Aliceには 3辛4甘カレーがおすすめ 順位 アイテムID アイテム名 辛さ 甘さ 好き 嫌い 1位 6 3辛4甘 3 4 3 0 2位 8 8辛6甘 8 6 2 1 21