Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
高校講座 | 第1回 推薦システムとは
Search
Sponsored
·
Your Podcast. Everywhere. Effortlessly.
Share. Educate. Inspire. Entertain. You do you. We'll handle the rest.
→
RecSysLab
PRO
August 06, 2022
Technology
0
550
高校講座 | 第1回 推薦システムとは
下記教科書を基にした高校生向けの推薦システム講座の講義スライドです。
奥 健太:基礎から学ぶ推薦システム - 情報技術で嗜好を予測する -, コロナ社 (2022)
RecSysLab
PRO
August 06, 2022
Tweet
Share
More Decks by RecSysLab
See All by RecSysLab
データベース|SQL
recsyslab
PRO
0
98
龍谷ICT教育|プログラミング演習科目における自動採点ツールを用いた自由進度学習
recsyslab
PRO
0
150
[RecSys2023論文読み会]Interface Design to Mitigate Inflation in Recommender Systems
recsyslab
PRO
0
150
[RecSys2022論文読み会]Bundle MCR: Towards Conversational Bundle Recommendation
recsyslab
PRO
0
440
高校講座 | 第2回 内容ベース推薦システム
recsyslab
PRO
0
500
高校講座 | 第3回 協調ベース推薦システム
recsyslab
PRO
0
480
内容ベース推薦システム | 第2回 推薦システム概論
recsyslab
PRO
0
840
協調ベース推薦システム | 第3回 推薦システム概論
recsyslab
PRO
0
820
知識ベース推薦システム | 第4回 推薦システム概論
recsyslab
PRO
0
740
Other Decks in Technology
See All in Technology
Digitization部 紹介資料
sansan33
PRO
1
6.8k
20260204_Midosuji_Tech
takuyay0ne
1
160
コスト削減から「セキュリティと利便性」を担うプラットフォームへ
sansantech
PRO
3
1.5k
広告の効果検証を題材にした因果推論の精度検証について
zozotech
PRO
0
180
茨城の思い出を振り返る ~CDKのセキュリティを添えて~ / 20260201 Mitsutoshi Matsuo
shift_evolve
PRO
1
300
Ruby版 JSXのRuxが気になる
sansantech
PRO
0
160
OpenShiftでllm-dを動かそう!
jpishikawa
0
110
名刺メーカーDevグループ 紹介資料
sansan33
PRO
0
1k
FinTech SREのAWSサービス活用/Leveraging AWS Services in FinTech SRE
maaaato
0
130
外部キー制約の知っておいて欲しいこと - RDBMSを正しく使うために必要なこと / FOREIGN KEY Night
soudai
PRO
12
5.5k
SREチームをどう作り、どう育てるか ― Findy横断SREのマネジメント
rvirus0817
0
280
Introduction to Sansan, inc / Sansan Global Development Center, Inc.
sansan33
PRO
0
3k
Featured
See All Featured
CSS Pre-Processors: Stylus, Less & Sass
bermonpainter
359
30k
jQuery: Nuts, Bolts and Bling
dougneiner
65
8.4k
DBのスキルで生き残る技術 - AI時代におけるテーブル設計の勘所
soudai
PRO
62
50k
Writing Fast Ruby
sferik
630
62k
Building Adaptive Systems
keathley
44
2.9k
JAMstack: Web Apps at Ludicrous Speed - All Things Open 2022
reverentgeek
1
340
SEOcharity - Dark patterns in SEO and UX: How to avoid them and build a more ethical web
sarafernandez
0
120
Become a Pro
speakerdeck
PRO
31
5.8k
エンジニアに許された特別な時間の終わり
watany
106
230k
A better future with KSS
kneath
240
18k
Paper Plane
katiecoart
PRO
0
46k
Claude Code どこまでも/ Claude Code Everywhere
nwiizo
61
52k
Transcript
推薦システムの仕組み ~この商品を買った人は、こんな商品も買っています~ 高校講座 | 第1回 推薦システムとは 奥 健太
推薦システムとは 2
推薦システムとは Amazon [1] • 「この商品を買った人はこんな商品も買っています」 • 購入履歴や閲覧履歴に基づく「おすすめ商品」 Netflix [2] •
ジャンル別の人気動画やトピックごとのおすすめ動画 • 詳細ページに表示される「こちらもオススメ」 YouTube [3] • 再生履歴や検索履歴に基づくおすすめ動画 • 再生中の動画の横に表示される関連動画 [1] https://www.amazon.co.jp/ [2] https://www.netflix.com/ [3] https://support.google.com/youtube/answer/6342839?hl=ja 3
推薦システムとは 推薦システム(recommender system) ユーザの嗜好に合ったアイテム(商品や映画、音楽、本、動画、画像、ニュース 記事など)を提示するシステム 「特定のユーザに最も興味をもたれそうなアイテムを提案するソフトウェ アツールおよび技術」[Ricci+2015] “Recommender Systems (RSs)
are software tools and techniques that provide suggestions for items that are most likely of interest to a particular user.” [Ricci+2015] Recommender Systems: Introduction and Challenges. Recommender Systems Handbook, pp. 1–34. Springer, 2015. 4
なぜ推薦システムが必要か 5
世界の本の数 129,864,880 冊 2010年8月現在 Google Books Searchブログ記事 [4] より [4]
http://booksearch.blogspot.com/2010/08/books-of-world-stand-up-and-be-counted.html(2022年6月現在) 6
YouTube 毎分 500 時間以上もの動画投稿 2022年6月現在 YouTube検索 - YouTubuのしくみ [5] より
[5] https://www.youtube.com/intl/ALL_jp/howyoutubeworks/product-features/search/(2022年6月現在) 7
膨大なコンテンツ 世界の本の数 [4]: ※2010年8月現在 Apple Musicでの配信楽曲数 [6]: ※2022年6月現在 9,000万曲以上 129,864,880冊
Spotifyでの配信楽曲数 [7]: ※2022年6月現在 7,000万曲以上 IMDbでの登録映画タイトル数 [8]: ※2022年3月現在 60万件以上 [4] http://booksearch.blogspot.com/2010/08/books-of-world-stand-up-and-be-counted.html(2022年6月現在) [6] https://www.apple.com/jp/apple-music/(2022年6月現在) [7] https://www.businessofapps.com/data/spotify-statistics/#4(2022年6月現在) [8] https://www.imdb.com/pressroom/stats/(2022年6月現在) 8
膨大なユーザ生成コンテンツ YouTube [5][9]: ※2022年6月現在 毎分 500 時間以上もの動画投稿 Twitter [10]: ※2018年5月現在
毎分 456,000 ツイート Instagram [10]: ※2018年5月現在 毎分 46,740 写真 Facebook [10]: ※2018年5月現在 毎秒 5 プロフィール [5] https://www.youtube.com/intl/ALL_jp/howyoutubeworks/product-features/search/(2022年6月現在) [9] https://www.tubefilter.com/2019/05/07/number-hours-video-uploaded-to-youtube-per-minute/(2022年6月現在) [10] https://www.forbes.com/sites/bernardmarr/2018/05/21/how-much-data-do-we-create-every-day-the-mind-blowing-stats-everyone-should-read/(2022年6月現在) 9
人生の持ち時間 • 人生80年とすると ◦ 80年 × 365日 = 29,200日 •
1日1本映画を観たとしても、29,200本 しか観れない • 全体のわずか 5% ほどしか消費できない IMDbでの登録映画タイトル数 [8]: ※2022年3月現在 60万件以上 限られた持ち時間で本当に面白い映画だけを観たい つまらない映画は観たくない 10
コンテンツ過多(content overload) 面白いコンテンツ、感動するコンテンツが埋もれている どのようにしてそのコンテンツに巡り合うか? 11
推薦システム ユーザの行動履歴(購買履歴や閲覧履歴、評価履歴など)を基にユーザの 興味に合うコンテンツの候補を推薦リストとして提示 12
推薦システム研究の究極的課題 コンピュータは 人の嗜好を予測できるのか? 13
データ×技術による嗜好予測 データ 技術 人のコンテンツに対する嗜好を予測 コンテンツを知る 人を知る 14