Upgrade to Pro — share decks privately, control downloads, hide ads and more …

Domain Adaptation 発展と動向まとめ

Sponsored · Ship Features Fearlessly Turn features on and off without deploys. Used by thousands of Ruby developers.

Domain Adaptation 発展と動向まとめ

Avatar for Yamato.OKAMOTO

Yamato.OKAMOTO

August 01, 2018
Tweet

More Decks by Yamato.OKAMOTO

Other Decks in Technology

Transcript

  1. 自己紹介 岡本大和(おかもとやまと)  2013 京都大学 情報学研究科 修士課程修了(美濃研究室所属)  画像処理やパターン認識の研究に着手 

    卒業後、オムロンに入社(京都企業!!)  R&D担当、機械学習・IoT・データ分析を扱う(バズワードばかり……) twitter.com/RoadRoller_DESU イラストレーターの友人が 描いてくれた似顔絵キャラ (※お気に入り)
  2. Generative Adversarial Networks Goodfellowら(NIPS’14) 初めてGANが提案された論文 Task『特徴量の抽出源は ”SampleData” か ”GenerativeData”か?』 黒線

    x :Data Generating Distribution 緑線 G(z):Generative Distribution 青線 D(x):Discriminative Distribution (正データである確率、0.5に近づけたい。) z :sampled uniformly D X Sample Z noize G
  3. Generative Adversarial Networks Goodfellowら(NIPS’14) 初めてGANが提案された論文 Task『特徴量の抽出源は ”SampleData” か ”GenerativeData”か?』 黒線

    x :Data Generating Distribution 緑線 G(z):Generative Distribution 青線 D(x):Discriminative Distribution (正データである確率、0.5に近づけたい。) z :sampled uniformly D X Sample Z noize G 【Problem】 特徴量の分布が似通うだけで Semanticな情報がKeepされない. (異なるクラスの特徴量が近傍に分布する)
  4. Deep Reconstruction-Classification Networks for Unsupervised Domain Adaptation Ghifaryら(ECCV’16) Target-Domainに対してUnsupervisedでSemanticな情報をKeepする Task①:Supervised

    classification of labeled source data Task②:Unsupervised reconstruction of unlabeled target data. 【Contribute】 Reconstruction Lossにより Semantic情報が残るようにした 【Contribute】 TargetのLabelがゼロの場合に対応
  5. Few-Shot Adversarial Domain Adaptation Mottianら(NIPS’17) Same class Different class Same

    Domain Different Domain Semanticな情報をKeepするには、 Classification-Taskを教師あり学習させるのが手っ取り早い。 そこで、Target-Domainのデータやラベルが少ない場合でも、 教師あり学習できる手法が提案された。 *Discriminator:4クラス分類を解けるよう学習 *Generator :ClassがSameかDifferentか見抜かれないよう学習 【Contribute】 Targetデータが少ない場合に対応
  6. M-ADDA: Unsupervised Domain Adaptation with Deep Metric Learning Laradjiら(ICML’18) クラス重心の近接度合に着目したCenter

    Magnet Lossを提案 1. SourceでClassification-TaskをSupervised Learning 2. SourceとTargetから抽出した特徴量でAdversarial Learning 3. Sourceにおいて各Classの重心Cを算出 4. Targetの特徴量がいずれかのClassの重心Cに近づくよう学習 1 2 3 4
  7. Learning Semantic Representations for Unsupervised Domain Adaptation Xieら(ICML’18) 異なるドメインの同一クラスの重心が一致するよう学習 1.

    SourceでClassification-TaskをSupervised Learning 2. SourceとTargetから抽出した特徴量でAdversarial Learning 3. 学習したモデルでTargetをClassificationしてラベル生成する (※このラベリングの正確性は保証されない) 4. 異なるドメインの同一クラスの重心が一致するよう学習 1 2 3 4 1