Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
【レイトレ合宿11】kagayaki_v4
Search
Yoshi's Dream
November 16, 2025
Programming
0
26
【レイトレ合宿11】kagayaki_v4
レイトレ合宿11にて提出したレンダラ kagayaki_v4のプレゼンスライドです.
Yoshi's Dream
November 16, 2025
Tweet
Share
More Decks by Yoshi's Dream
See All by Yoshi's Dream
【レイトレ合宿10】kagayaki_v3
runningoutrate
0
780
【KMC春合宿2024】実装視点で見るNeural Radiance Fields
runningoutrate
0
400
レイトレ合宿9セミナー資料 SVGFについて
runningoutrate
0
1.1k
Other Decks in Programming
See All in Programming
Atomics APIを知る / Understanding Atomics API
ssssota
1
130
Vueで学ぶデータ構造入門 リンクリストとキューでリアクティビティを捉える / Vue Data Structures: Linked Lists and Queues for Reactivity
konkarin
1
180
詳細の決定を遅らせつつ実装を早くする
shimabox
1
1k
オンデバイスAIとXcode
ryodeveloper
0
470
Bakuraku E2E Scenario Test System Architecture #bakuraku_qa_study
teyamagu
PRO
0
710
CSC509 Lecture 11
javiergs
PRO
0
310
Tangible Code
chobishiba
3
530
開発生産性が組織文化になるまでの軌跡
tonegawa07
0
150
Designing Repeatable Edits: The Architecture of . in Vim
satorunooshie
0
310
JEP 496 と JEP 497 から学ぶ耐量子計算機暗号入門 / Learning Post-Quantum Crypto Basics from JEP 496 & 497
mackey0225
2
220
Blazing Fast UI Development with Compose Hot Reload (droidcon London 2025)
zsmb
0
500
ネストしたdata classの面倒な更新にさようなら!Lensを作って理解するArrowのOpticsの世界
shiita0903
1
320
Featured
See All Featured
How to train your dragon (web standard)
notwaldorf
97
6.4k
Performance Is Good for Brains [We Love Speed 2024]
tammyeverts
12
1.3k
Distributed Sagas: A Protocol for Coordinating Microservices
caitiem20
333
22k
We Have a Design System, Now What?
morganepeng
54
7.9k
How Fast Is Fast Enough? [PerfNow 2025]
tammyeverts
3
320
Into the Great Unknown - MozCon
thekraken
40
2.2k
Visualization
eitanlees
150
16k
RailsConf 2023
tenderlove
30
1.3k
jQuery: Nuts, Bolts and Bling
dougneiner
65
8k
Agile that works and the tools we love
rasmusluckow
331
21k
Principles of Awesome APIs and How to Build Them.
keavy
127
17k
Automating Front-end Workflow
addyosmani
1371
200k
Transcript
RTCamp11 Renderer Name: kagayaki_v4 Yoshi’s Dream (Twitter: @TTRS_Yoshi_CG) Resolution: 1024x1024
102 images in 178s 1
kagayaki kagayaki(輝き) CUDA C++で記述.基本フルスクラッチ, RTコア不使用 kagayaki_v0(cudamypt) 2年前の提出物.バグの巣窟 kayagaki_v1 RGB /
Spectral Path Tracer / NeRF train and renderer kagayaki_v2は空き番地 kagayaki_v3 昨年の提出物 RGB Ray Tracer / 3D空間音響シミュレーター(低周波領域) 2
kagayaki_v4 RGB Ray Tracer シーン表現 Scene -> Shape -> Primitive
の2-Level階層構造 行列変換により座標系を変換できるようになった(kagayaki_v3では並進のみ) BLAS, TLAS共にH-PLOCのBVH2を実装 実装を工夫してTLAS, BLASの構築をkagayaki_v3より数十倍高速化 kagayaki_v3ではBLAS構築ごとにメモリを確保していたがそれを一回にまとめた MortonCodeの上位32bitにShapeIDを入れてソートすると,ソート後にはMortonCode配列において Shapeに含まれるプリミティブが区間になる(32bitは勿体ない気もする) H-PLOCのBLAS構築はまだ並列化できていない(stream分割で高速化)(LBVHなら簡単?(未検証)) TLASはアニメーション毎フレーム再構築 Scene … Shape Shape Shape …….. … 3
kagayaki_v4 レイトレ処理 1次レイを飛ばしてGbufferを計算 可視点からWavefront Path Tracing レイをキューで管理 キューの占有率をもとに貪欲法で次のカーネルを動的選択 SamplePixel AccumSurface
RussianRoulette AccumEnv Store to image NEE SampleNextRay ClosestHit hit miss hit miss RR fail RR pass : カーネル単位 4
kagayaki_v4 SamplePixel 次に処理するピクセルを決定する Gbufferを用いてPathをActivateする StaticSampler pixelID = atomicAdd(&cnt, 1u) %
nPixels ある程度サンプルが貯まるまで用いられる AdaptiveSampler(今回不使用) Bufferの統計量をもとに処理するピクセルを動的選択 abs((すべてのサンプルの推定量) – (半分のサンプルの推定量))に比例して選択 サンプル点数がある程度増えないと逆効果 選択方法は要改善(暗い所の分散を過小評価する) 出力画像 サンプル数分布(白: 多い) 5
kagayaki_v4 マテリアル表現 Lambert Diffuse 完全鏡面 Disney BRDF 昨年(kagayaki_v3)は交差判定に拘るあまり表現力を失っていた 複雑なマテリアルの評価処理は想像より重い ラフネスのグラデーション好き
比較的軽量なシーン 6
kagayaki_v4 サンプリング処理 各交差点でのNEE 面光源 + BSDFサンプリングのMIS ReSTIR DI (今回不使用) 面光源サンプリングによる初期サンプル生成
Spatial Reuseはunbiased Temporal Reuseはbiased (アニメーション時) ReSTIR GI (今回不使用) プライマリヒットからいつも通りレイトレをする Spatial Reuseのバイアスが取れない…… Unbiasedness >>>>> 速度 通常 1spp ReSTIR DI 1spp (M=32, Knb = 5) リファレンス リファレンス ReSTIR GI…? 7
kagayaki_v4 ReSTIR DI 実装構造 ReadGBuffer Sample M Initial Candidates Temporal
Reuse Spatial Reuse Shade : カーネル単位 8
kagayaki_v4 ReSTIR GI 実装構造 ReadGBuffer Sample 1 initial candidate ClosestHit
SampleNextRay LightSample UpdateReservoir ClosestHit AccumSurface RussianRoulette AccumEnv NEE SampleNextRay Temporal Reuse Spatial Reuse Shade hit miss hit miss RR Pass RR Fail no primary hit hit/miss cnt < Threshold cnt ≥ Threshold cnt += queueSize cnt = 0 : カーネル単位 : 直列実行単位 9
kagayaki_v4 その他 ファイル入出力: glTF デノイザー: なし 使用ライブラリ (これ以外はフルスクラッチ実装) Dear ImGUI:
GUI処理 tinyglTF: glTFロード stb_image: 画像IO C++ / CUDA標準ライブラリ(cub, thrust, curand) 10
シーン, アニメーション 締切3時間前から作成開始 ReSTIR GIのバイアスを解消しようと奮闘していましたがここで諦め…… 元々作りたかったアニメーションを作る時間はないのでアイデアを一部取り入れてBlenderで作成 動きを感じられるアニメーションを作りたいという気持ち → サンプル数減らしてでも長めのアニメーションを 2,
3個目のオブジェクトはレイトレ合宿9,10でレンダリングしたシーンがベースです(temporal reuse) 三角面: 87240枚 Blenderでの表示 11
シーン, アニメーション 使用アセット(これ以外はすべて自作です) Cornell Box: McGuire Computer Graphics Archiveより 石や岩や木などのテクスチャ:
Poly Havenより Blenderでの表示 12
Thanks! まだまだ高速化できます! 頑張ります 幻の最終フレーム......