Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Datadog APMで測定するアプリケーションパフォーマンス
Search
Hiroyuki Shigeta
February 15, 2024
Technology
0
280
Datadog APMで測定するアプリケーションパフォーマンス
2024.02.15 第3木曜LT会 #2 発表資料です。
https://metaps.connpass.com/event/307900/
Hiroyuki Shigeta
February 15, 2024
Tweet
Share
Other Decks in Technology
See All in Technology
Java 25に至る道
skrb
3
140
名刺メーカーDevグループ 紹介資料
sansan33
PRO
0
1k
Scrum Guide Expansion Pack が示す現代プロダクト開発への補完的視点
sonjin
0
310
ハッカソンから社内プロダクトへ AIエージェント ko☆shi 開発で学んだ4つの重要要素
leveragestech
0
540
2025年 山梨の技術コミュニティを振り返る
yuukis
0
150
Claude Codeを使った情報整理術
knishioka
19
12k
小さく、早く、可能性を多産する。生成AIプロジェクト / prAIrie-dog
visional_engineering_and_design
0
320
ソフトウェアエンジニアとAIエンジニアの役割分担についてのある事例
kworkdev
PRO
1
360
AIと融ける人間の冒険
pujisi
0
110
AWSと生成AIで学ぶ!実行計画の読み解き方とSQLチューニングの実践
yakumo
2
160
Introduction to Sansan, inc / Sansan Global Development Center, Inc.
sansan33
PRO
0
2.9k
モノタロウ x クリエーションラインで実現する チームトポロジーにおける プラットフォームチーム・ ストリームアラインドチームの 効果的なコラボレーション
creationline
0
340
Featured
See All Featured
DevOps and Value Stream Thinking: Enabling flow, efficiency and business value
helenjbeal
1
76
The Success of Rails: Ensuring Growth for the Next 100 Years
eileencodes
47
7.9k
Git: the NoSQL Database
bkeepers
PRO
432
66k
Ruling the World: When Life Gets Gamed
codingconduct
0
120
Learning to Love Humans: Emotional Interface Design
aarron
274
41k
The Curse of the Amulet
leimatthew05
0
6.7k
Amusing Abliteration
ianozsvald
0
81
Discover your Explorer Soul
emna__ayadi
2
1k
Save Time (by Creating Custom Rails Generators)
garrettdimon
PRO
32
1.9k
Leading Effective Engineering Teams in the AI Era
addyosmani
9
1.4k
How to Get Subject Matter Experts Bought In and Actively Contributing to SEO & PR Initiatives.
livdayseo
0
38
Darren the Foodie - Storyboard
khoart
PRO
0
2.1k
Transcript
Datadog APMで測定するアプリケー ションパフォーマンス 株式会社メタップスペイメント 茂田 裕行
自己紹介 名前 茂田 裕行 経歴 • 2018年に株式会社メタップスペイメント入社 • それ以前はSIerやスタートアップでサービスやアプリの開発、保守 普段使っている言語 Go,
Python
『給与即時払いサービスCRIA』のサービス構成 • バックエンドAPI ◦ Go ◦ AWS(ECS Fargate, Aurora, SQS,
S3, SNS, Lambda) • アプリ ◦ React Native • ブラウザ版、管理画面 ◦ React • マイクロサービス ◦ 送金 ◦ データの一括登録
運用で困っていること • インフラで発生するインシデント(メールが送られない、画面表示が遅いなど)が発生しても、即座の原因 特定が困難 • イベント(データ登録や更新)ごとの頻度や利用時間帯がつかめない • 時系列的に記録されたログでは、他に来るリクエストの情報が混じったりして、特定の関心のあるリクエス トを追うのが難しい •
処理が複数のサービスに分散されていると、関心のあるの処理を追いづらい
Datadog APMとは Datadog社が提供する、アプリケーションのパフォーマンスをリアルタイムで監視し、分析するためのツール (SaaS) • ユーザーのリクエストがシステムを通過するパスを追跡し、各モジュールでの処理時間を把握できる • アプリケーションのパフォーマンスを監視し、異常が発生した場合に検知 • 詳細なレポーティング
• 分散システムのサポート
実際に組み込んでみた // アプリケーション開始時 tracer.Start(tracer.WithServiceName(serviceName)) defer tracer.Stop() // データベース接続時 sqltrace.Register("mysql", &mysql.MySQLDriver{},
sqltrace.WithServiceName(serviceName)) db, err := sqltrace.Open("mysql", "datadog_sample:password@tcp(db:3306)/db_test", sqltrace.WithServiceName(serviceName)) if err != nil { logger.Error("failed to connect mysql", slog.Any("error", err)) return } defer db.Close() それ以外にも、datadog-agentの設定でAPM有効化を行う必要がある ソースコードでライブラリを組み込む必要がある( Goの場合)
適用後に見られる画面 リクエスト数、エラー数、レイテンシ、処理内訳が確認できた サマリ
適用後に見られる画面 トレース 適切に設定すれば、アプリケーションでかかった時間だけでなく、外部システム( DBやマイクロサービス) の呼び出し時間や処理内容もわかる。 メソッドごとの処理時間も、スパン(処理単位)を設定すればわかる。
適用後に見られる画面 ログ 適切に設定(span_idとtrace_idをログに出力しdatadogへ送信)すれば、リクエストごとに、紐づいたログ を参照できる
今後の課題 • 本番環境への全体的な適用(ソースコード修正が必要) ◦ Goだとcontext.Contextというパラメータに、 APM設定用の情報を設定し、リクエストを受け付ける処理から DB やAWS操作処理まで引き回す必要がある ◦ 各サービスで修正する必要がある
• 各イベントの時間帯ごとの発生頻度を出す方法は調査中