Upgrade to Pro — share decks privately, control downloads, hide ads and more …

Monocular 3D Object Detection Survey

Hata Ryosuke
January 22, 2020

Monocular 3D Object Detection Survey

Survey for a kaggle competition: Peking University/Baidu - Autonomous Driving

Hata Ryosuke

January 22, 2020
Tweet

More Decks by Hata Ryosuke

Other Decks in Research

Transcript

  1. Summary ・CAD modelを使わないもの[1, 2] End to Endで学習が可能。(OFTNet) ・CAD modelを使う[3, 4,

    5, 6, 7] 1 Stage: Mask-RCNN, RoIを作成 2 Stage: RoIから三次元情報を作成 論文中よく使われているのはFaster R-CNNだが, ここから最後までやるのはつらそう。
  2. Key Point 特徴 ・二次元画像から,三次元の特徴量を作り,上から見た図を作成し, 位置推定などを行う。 ・三次元の特徴量を作成する際に奥行き推定はしない。 ・物体の中心のNMSをする。 ・CenterNetと似たようなpipeline。 利点 ・EndToEnd ・Githubにコードがある。

    ・論文の参考値に必ず出てくるので実績がある。 欠点 ・奥行き推定がないので,重なっているObjectの部分は共有される。 →深さ推定すれば精度はあがる? ・CADを使わない。 コメント:今回のタスク的に, CenterNetとアンサンブルしても良いかもしれない。
  3. [2] SHIFT R-CNN: DEEP MONOCULAR 3D OBJECT DETECTION WITH CLOSED-FROM

    GEOMETRIC CONSTRAINTS 2019/03 https://arxiv.org/abs/1905.09970
  4. Key Point 特徴 ・RoIAlignedを使って,3次元位置推定をする。 ・三次元Bounding Boxを作って,車の位置tを算出する。 ・その後,Bouding Boxや位置情報を三層のNNに入れて位置を改善 する(ShiftNet)。 利点

    ・最後のShitNetはどのアーキテクチャーでも使えるだろう。 欠点 ・End to Endではない。 RoIAlignedを使う時点でR-CNNのアーキテク チャは使っている。 ・CADを使わない。 コメント:わざわざ読まなくても良いと思う。
  5. [3] Deep MANT: A Coarse-to-fine Many-Task Network for joint 2D

    and 3D vehicle analysis from monocular image 2017/3 https://arxiv.org/abs/1703.07570
  6. Key Point 特徴 ・二次元データから特徴点を抽出して三次元データとマッチさせるは じめの論文。 ・車は特徴的な形状をしているので,三次元データへと再現ができる と提言している。 利点 ・CADを使う。 欠点

    ・End to Endではない。Cascaded R-CNNのアーキテクチャを使って二 次元特徴量を出している。 ・三次元のテンプレートマッチングのやり方が不明。 コメント:精度はそこまで出ているわけではないので読まなくてもいい と思う。
  7. Key Point 特徴 ・RoIから特徴量抽出→分岐させてregression ・分岐の中身はamodal Box(見えない部分を含めたBounding Box), 中心位置,角度 ,3D CADをPCAで10次元に圧縮したもの。

    ・上の情報を使って三次元画像をレンダリング,二次元上に再生して,マスターと比 較。 利点 ・CADを使う。精度は出そう。 欠点 ・End to Endではない。 ・pipelineをすべて動かそうと思うと,R−CNNスタートで間にOpenGLを 使うことがあるので,手間がすごそう。 コメント:3D CADをPCAするアイデアは使えそう。 ただし,すべてのpipelineを通すとなると辛そう。
  8. アーキテクチャ ・Stage 1でRoIを抽出 ・Stage 2でRoIの特徴量を抽出(論文ではResNet-50) →分岐   →amodal Box(見えない部分を含めたBounding Box),

    中心位 置,角度,構造特徴(PCAしたもの)を それぞれLossを出す(右 側の図はPoseとshapeの損失構造の詳細) ・Stage 3 2で得られた情報をもとに三次元の構造体をレンダリ ングして,二次元画像上に再生/比較
  9. [5] Mono3D++: Monocular 3D Vehicle Detection with Two-Scale 3D Hypotheses

    and Task Priors 2019/1 https://arxiv.org/abs/1901.03446
  10. Key Point 特徴 ・SSDの特徴量から2次元擬推定,3次元Bounding Box, WireFrameに よる推定によるJointで最終的にrobostな3次元位置推定。(別の車に 隠れている車があるので,より頑健にしたい) ・Loss function周りや,3次元推定の数式の説明が丁寧。

    利点 ・SSDでやってるので,理屈の上ではEnd to End 欠点 ・実験は2次元Bounding Boxを出すのに一週間,その後の処理が2 時間とか書かれているので,End to Endとは言い難い。 ・数式を追うのが結構しんどい。 コメント:数式を読んで実装することを考えると参考にはならなさそう。 精読するならば読み応えありそう。
  11. Key Point 特徴 ・Mask R-CNNを通したあとの2次元Bounding Boxの特徴量から1. 14点のkeypoint(おそらく特徴点)を抽出 2.角度などの推定 3.5つの3D CADとのテンプレートマッチ

    する。 ・1➖3の特徴量から深さ推定して,位置を特定する。 利点 ・CADの一部を使う。 欠点 ・多分。End to Endではない コメント:使っているCADがセダンやミニバンなどの特徴的な車の5種 だったので途中で読むのをやめた。あまり有用ではないと思う。
  12. [7] Monocular 3D Object Detection Leveraging Accurate Proposals and Shape

    Reconstruction 2019/4 https://arxiv.org/abs/1904.01690 CVPR 2019