Upgrade to PRO for Only $50/Year—Limited-Time Offer! 🔥
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
An Effective Approach to Unsupervised Machine T...
Search
Ryusuke_Tanaka
November 21, 2019
Technology
0
120
An Effective Approach to Unsupervised Machine Translationの紹介
An Effective Approach to Unsupervised Machine Translationの紹介です。
教師なし翻訳に関するお話です。
Ryusuke_Tanaka
November 21, 2019
Tweet
Share
More Decks by Ryusuke_Tanaka
See All by Ryusuke_Tanaka
医師向けQAサイトのための推薦システム開発
ryusuketa
1
1.7k
Universal Decompositional Semantics on Universal Dependencies
ryusuketa
0
85
Learning Dual Retrieval Module for Semi-supervised Relation Extractionの紹介
ryusuketa
0
82
動画視聴を整数倍(最大値)で_効率化するchrome extension作った
ryusuketa
0
82
双曲空間への単語埋め込みと QAサービスでの自然言語処理を 用いた推薦システムについて
ryusuketa
0
590
Other Decks in Technology
See All in Technology
21st ACRi Webinar - AMD Presentation Slide (Nao Sumikawa)
nao_sumikawa
0
200
「え?!それ今ではHTMLだけでできるの!?」驚きの進化を遂げたモダンHTML
riyaamemiya
10
4.4k
“決まらない”NSM設計への処方箋 〜ビットキーにおける現実的な指標デザイン事例〜 / A Prescription for "Stuck" NSM Design: Bitkey’s Practical Case Study
bitkey
PRO
1
340
Oracle Cloud Infrastructure:2025年11月度サービス・アップデート
oracle4engineer
PRO
1
120
その設計、 本当に価値を生んでますか?
shimomura
2
180
useEffectってなんで非推奨みたいなこと言われてるの?
maguroalternative
9
6.2k
.NET 10 のパフォーマンス改善
nenonaninu
2
4.7k
eBPFとwaruiBPF
sat
PRO
3
1k
Introduction to Sansan for Engineers / エンジニア向け会社紹介
sansan33
PRO
5
48k
M5UnifiedとPicoRubyで楽しむM5シリーズ
kishima
0
110
20251127 BigQueryリモート関数で作る、お手軽AIバッチ実行環境
daimatz
0
430
プロダクトマネジメントの分業が生む「デリバリーの渋滞」を解消するTPMの越境
recruitengineers
PRO
3
430
Featured
See All Featured
Writing Fast Ruby
sferik
630
62k
The Straight Up "How To Draw Better" Workshop
denniskardys
239
140k
Practical Orchestrator
shlominoach
190
11k
The Art of Programming - Codeland 2020
erikaheidi
56
14k
Measuring & Analyzing Core Web Vitals
bluesmoon
9
690
Let's Do A Bunch of Simple Stuff to Make Websites Faster
chriscoyier
508
140k
How Fast Is Fast Enough? [PerfNow 2025]
tammyeverts
3
380
Why You Should Never Use an ORM
jnunemaker
PRO
60
9.6k
BBQ
matthewcrist
89
9.9k
Agile that works and the tools we love
rasmusluckow
331
21k
Keith and Marios Guide to Fast Websites
keithpitt
413
23k
Practical Tips for Bootstrapping Information Extraction Pipelines
honnibal
25
1.6k
Transcript
An Effective Approach to Unsupervised Machine Translation
None
?/= 8E 45": 3'209 40G0AIoT< :+;F<%$6 B@-(,F.
!)#7*&>12FM2 D1 CD!)#7ML
Unsupervised Machine Translation • 87=@16Statistical Machine Translation (SMT) Neural Machine
Translation (NMT))(95/&%$ ◦ .@.0:2?>! • -B"*< .@;3,A=@4+ ◦ Word translation without parallel data.[Alexis 2017], ◦ Learning bilingual word embeddings with (almost) no bilingual data [Artetxe 2017] • !#'5/ 87=@ NMT>!4+ ◦ UNSUPERVISED MACHINE TRANSLATION USING MONOLINGUAL CORPORA ONLY [Lample2018] ◦ Unsupervised statistical machine translation [Artetxe 2018]
Supervised Machine Translation NMT Back-translation !
#"BLEU http://deeplearning.hatenablog.com/entry/back_translation#f-726c04a7
!! • D8?8B;=/@[Alexis 2017] ◦ /@*;="%$#1: ◦ ;=B/@)3& A404 6
- 5.+=A'9C9 7> ◦ +=A( , +=2<EF
SMT https://www.nhk.or.jp/strl/publica/rd/rd168/pdf/P14-25.pdf
' 1. % $ 2. &! 3. SMT$
" 4. " refinement 5. NMT(#
&9 3+ • bi-gram embedding+A8: #6>$<[Artetxe 2018] • :
100=0/ softmax &952"* (e,f8: 4 :, τ1( ?.',%!7 ) ;- …@@
2<0K,A • 3N*6 5/2<0KPO • ex. “Sunday Telegraph”
→ “The Times of London” • =H. %'#& $"&MQ4 R(8-C WaveNet:1D+@9> IF !) 2<G@7JB; LS 7JE?/ T
Unsupervised SMT • Back-translation.CE/;> ◦ DF%"&*8L @3 DFB<+4DF%"&.C •
9H7Cycle GAN !#K65= ◦ -:02I ?HA M 1 : DF'! : ,G(#'$)'! : DF7J'!
+% • '$ SMT+% .0 .0 (), +% • SMT+%
.0!/1-*&# ()2"
NMT$ • "SMT$ %# NMT$ • % NMT#
: SMT%! : NMT%!
WMT2014 seq2seq
…