$30 off During Our Annual Pro Sale. View Details »
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
An Effective Approach to Unsupervised Machine T...
Search
Ryusuke_Tanaka
November 21, 2019
Technology
0
120
An Effective Approach to Unsupervised Machine Translationの紹介
An Effective Approach to Unsupervised Machine Translationの紹介です。
教師なし翻訳に関するお話です。
Ryusuke_Tanaka
November 21, 2019
Tweet
Share
More Decks by Ryusuke_Tanaka
See All by Ryusuke_Tanaka
医師向けQAサイトのための推薦システム開発
ryusuketa
1
1.7k
Universal Decompositional Semantics on Universal Dependencies
ryusuketa
0
86
Learning Dual Retrieval Module for Semi-supervised Relation Extractionの紹介
ryusuketa
0
85
動画視聴を整数倍(最大値)で_効率化するchrome extension作った
ryusuketa
0
82
双曲空間への単語埋め込みと QAサービスでの自然言語処理を 用いた推薦システムについて
ryusuketa
0
590
Other Decks in Technology
See All in Technology
多様なデジタルアイデンティティを攻撃からどうやって守るのか / 20251212
ayokura
0
490
プロンプトやエージェントを自動的に作る方法
shibuiwilliam
14
14k
30分であなたをOmniのファンにしてみせます~分析画面のクリック操作をそのままコード化できるAI-ReadyなBIツール~
sagara
0
180
品質のための共通認識
kakehashi
PRO
4
380
WordPress は終わったのか ~今のWordPress の制作手法ってなにがあんねん?~ / Is WordPress Over? How We Build with WordPress Today
tbshiki
2
840
AWS Security Agentの紹介/introducing-aws-security-agent
tomoki10
0
320
チーリンについて
hirotomotaguchi
6
2.1k
100以上の新規コネクタ提供を可能にしたアーキテクチャ
ooyukioo
0
120
業務のトイルをバスターせよ 〜AI時代の生存戦略〜
staka121
PRO
2
220
AWS re:Invent 2025~初参加の成果と学び~
kubomasataka
0
140
Identity Management for Agentic AI 解説
fujie
0
120
AIBuildersDay_track_A_iidaxs
iidaxs
1
110
Featured
See All Featured
4 Signs Your Business is Dying
shpigford
186
22k
Ten Tips & Tricks for a 🌱 transition
stuffmc
0
29
Practical Orchestrator
shlominoach
190
11k
Why You Should Never Use an ORM
jnunemaker
PRO
61
9.6k
Designing for humans not robots
tammielis
254
26k
The Spectacular Lies of Maps
axbom
PRO
1
390
Reality Check: Gamification 10 Years Later
codingconduct
0
1.9k
How GitHub (no longer) Works
holman
316
140k
Tell your own story through comics
letsgokoyo
0
740
Lightning Talk: Beautiful Slides for Beginners
inesmontani
PRO
1
400
What’s in a name? Adding method to the madness
productmarketing
PRO
24
3.8k
Evolving SEO for Evolving Search Engines
ryanjones
0
71
Transcript
An Effective Approach to Unsupervised Machine Translation
None
?/= 8E 45": 3'209 40G0AIoT< :+;F<%$6 B@-(,F.
!)#7*&>12FM2 D1 CD!)#7ML
Unsupervised Machine Translation • 87=@16Statistical Machine Translation (SMT) Neural Machine
Translation (NMT))(95/&%$ ◦ .@.0:2?>! • -B"*< .@;3,A=@4+ ◦ Word translation without parallel data.[Alexis 2017], ◦ Learning bilingual word embeddings with (almost) no bilingual data [Artetxe 2017] • !#'5/ 87=@ NMT>!4+ ◦ UNSUPERVISED MACHINE TRANSLATION USING MONOLINGUAL CORPORA ONLY [Lample2018] ◦ Unsupervised statistical machine translation [Artetxe 2018]
Supervised Machine Translation NMT Back-translation !
#"BLEU http://deeplearning.hatenablog.com/entry/back_translation#f-726c04a7
!! • D8?8B;=/@[Alexis 2017] ◦ /@*;="%$#1: ◦ ;=B/@)3& A404 6
- 5.+=A'9C9 7> ◦ +=A( , +=2<EF
SMT https://www.nhk.or.jp/strl/publica/rd/rd168/pdf/P14-25.pdf
' 1. % $ 2. &! 3. SMT$
" 4. " refinement 5. NMT(#
&9 3+ • bi-gram embedding+A8: #6>$<[Artetxe 2018] • :
100=0/ softmax &952"* (e,f8: 4 :, τ1( ?.',%!7 ) ;- …@@
2<0K,A • 3N*6 5/2<0KPO • ex. “Sunday Telegraph”
→ “The Times of London” • =H. %'#& $"&MQ4 R(8-C WaveNet:1D+@9> IF !) 2<G@7JB; LS 7JE?/ T
Unsupervised SMT • Back-translation.CE/;> ◦ DF%"&*8L @3 DFB<+4DF%"&.C •
9H7Cycle GAN !#K65= ◦ -:02I ?HA M 1 : DF'! : ,G(#'$)'! : DF7J'!
+% • '$ SMT+% .0 .0 (), +% • SMT+%
.0!/1-*&# ()2"
NMT$ • "SMT$ %# NMT$ • % NMT#
: SMT%! : NMT%!
WMT2014 seq2seq
…