Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Learning Dual Retrieval Module for Semi-supervi...
Search
Ryusuke_Tanaka
October 01, 2019
Technology
0
72
Learning Dual Retrieval Module for Semi-supervised Relation Extractionの紹介
Learning Dual Retrieval Module for Semi-supervised Relation Extractionの紹介です。
Ryusuke_Tanaka
October 01, 2019
Tweet
Share
More Decks by Ryusuke_Tanaka
See All by Ryusuke_Tanaka
医師向けQAサイトのための推薦システム開発
ryusuketa
1
1.6k
An Effective Approach to Unsupervised Machine Translationの紹介
ryusuketa
0
120
Universal Decompositional Semantics on Universal Dependencies
ryusuketa
0
77
動画視聴を整数倍(最大値)で_効率化するchrome extension作った
ryusuketa
0
77
双曲空間への単語埋め込みと QAサービスでの自然言語処理を 用いた推薦システムについて
ryusuketa
0
550
Other Decks in Technology
See All in Technology
Uniadex__公開版_20250617-AIxIoTビジネス共創ラボ_ツナガルチカラ_.pdf
iotcomjpadmin
0
160
初めてのAzure FunctionsをClaude Codeで作ってみた / My first Azure Functions using Claude Code
hideakiaoyagi
1
220
CI/CD/IaC 久々に0から環境を作ったらこうなりました
kaz29
1
170
Prox Industries株式会社 会社紹介資料
proxindustries
0
280
生成AI時代 文字コードを学ぶ意義を見出せるか?
hrsued
1
280
Snowflake Summit 2025全体振り返り / Snowflake Summit 2025 Overall Review
mtpooh
2
400
GeminiとNotebookLMによる金融実務の業務革新
abenben
0
230
AWS アーキテクチャ作図入門/aws-architecture-diagram-101
ma2shita
29
11k
Observability infrastructure behind the trillion-messages scale Kafka platform
lycorptech_jp
PRO
0
140
セキュリティの民主化は何故必要なのか_AWS WAF 運用の 10 の苦悩から学ぶ
yoh
1
130
AIエージェント最前線! Amazon Bedrock、Amazon Q、そしてMCPを使いこなそう
minorun365
PRO
14
5.1k
20250625 Snowflake Summit 2025活用事例 レポート / Nowcast Snowflake Summit 2025 Case Study Report
kkuv
1
310
Featured
See All Featured
A Tale of Four Properties
chriscoyier
160
23k
What's in a price? How to price your products and services
michaelherold
246
12k
CoffeeScript is Beautiful & I Never Want to Write Plain JavaScript Again
sstephenson
161
15k
Product Roadmaps are Hard
iamctodd
PRO
54
11k
RailsConf & Balkan Ruby 2019: The Past, Present, and Future of Rails at GitHub
eileencodes
138
34k
Testing 201, or: Great Expectations
jmmastey
42
7.5k
How to train your dragon (web standard)
notwaldorf
93
6.1k
Templates, Plugins, & Blocks: Oh My! Creating the theme that thinks of everything
marktimemedia
31
2.4k
StorybookのUI Testing Handbookを読んだ
zakiyama
30
5.8k
jQuery: Nuts, Bolts and Bling
dougneiner
63
7.8k
実際に使うSQLの書き方 徹底解説 / pgcon21j-tutorial
soudai
PRO
181
53k
個人開発の失敗を避けるイケてる考え方 / tips for indie hackers
panda_program
107
19k
Transcript
Learning Dual Retrieval Module for Semi- supervised Relation Extraction
h$>Y 4X?f7]Oc=l ,)8#d 4,),)l9N#e 4,)kl9NiI!,)8aKTD,)`m#G p]Oc=l9N.5, C6f7:j !+*%#ogH _L
! nB" bB" c=:j nB" ,)# q 4l9S<4PES<,+(U\ 4l9#6,) FBkeyword matching^A;^VZ@ 4l9103(&2#-'+/J R ! rlearning-to-rank#d WQZM[N
Introduction 5$-%/" entity 5$+-% 63#'47 ,1 .*)2&.*)2distant supervision0( !
self-training self-training: %" ,!-$unlabeled (*#. )
, proposed: '+& ,self-training-
relation relation
: relation prediction relation retrieval :unlabelled
Prediction !
! learning-to-rank" Pointwise Approach:
Pairwise Approach :
Unlabeled& ". unlabeled self-training & %, * →+(%,
→& ".)# /". !'$ )- EM
TACRED:
None