Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Learning Dual Retrieval Module for Semi-supervi...
Search
Ryusuke_Tanaka
October 01, 2019
Technology
0
61
Learning Dual Retrieval Module for Semi-supervised Relation Extractionの紹介
Learning Dual Retrieval Module for Semi-supervised Relation Extractionの紹介です。
Ryusuke_Tanaka
October 01, 2019
Tweet
Share
More Decks by Ryusuke_Tanaka
See All by Ryusuke_Tanaka
医師向けQAサイトのための推薦システム開発
ryusuketa
1
1.6k
An Effective Approach to Unsupervised Machine Translationの紹介
ryusuketa
0
100
Universal Decompositional Semantics on Universal Dependencies
ryusuketa
0
67
動画視聴を整数倍(最大値)で_効率化するchrome extension作った
ryusuketa
0
67
双曲空間への単語埋め込みと QAサービスでの自然言語処理を 用いた推薦システムについて
ryusuketa
0
460
Other Decks in Technology
See All in Technology
なぜ今 AI Agent なのか _近藤憲児
kenjikondobai
4
1.4k
Amazon CloudWatch Network Monitor のススメ
yuki_ink
1
210
AI前提のサービス運用ってなんだろう?
ryuichi1208
8
1.4k
10XにおけるData Contractの導入について: Data Contract事例共有会
10xinc
6
660
AWS Media Services 最新サービスアップデート 2024
eijikominami
0
200
OCI Security サービス 概要
oracle4engineer
PRO
0
6.5k
Amplify Gen2 Deep Dive / バックエンドの型をいかにしてフロントエンドへ伝えるか #TSKaigi #TSKaigiKansai #AWSAmplifyJP
tacck
PRO
0
390
Flutterによる 効率的なAndroid・iOS・Webアプリケーション開発の事例
recruitengineers
PRO
0
120
Terraform Stacks入門 #HashiTalks
msato
0
360
DynamoDB でスロットリングが発生したとき/when_throttling_occurs_in_dynamodb_short
emiki
0
250
アジャイルチームがらしさを発揮するための目標づくり / Making the goal and enabling the team
kakehashi
3
140
Introduction to Works of ML Engineer in LY Corporation
lycorp_recruit_jp
0
140
Featured
See All Featured
What’s in a name? Adding method to the madness
productmarketing
PRO
22
3.1k
Intergalactic Javascript Robots from Outer Space
tanoku
269
27k
Art, The Web, and Tiny UX
lynnandtonic
297
20k
Designing on Purpose - Digital PM Summit 2013
jponch
115
7k
Designing Experiences People Love
moore
138
23k
JavaScript: Past, Present, and Future - NDC Porto 2020
reverentgeek
47
5k
[Rails World 2023 - Day 1 Closing Keynote] - The Magic of Rails
eileencodes
33
1.9k
The Art of Delivering Value - GDevCon NA Keynote
reverentgeek
8
900
実際に使うSQLの書き方 徹底解説 / pgcon21j-tutorial
soudai
169
50k
VelocityConf: Rendering Performance Case Studies
addyosmani
325
24k
BBQ
matthewcrist
85
9.3k
Sharpening the Axe: The Primacy of Toolmaking
bcantrill
38
1.8k
Transcript
Learning Dual Retrieval Module for Semi- supervised Relation Extraction
h$>Y 4X?f7]Oc=l ,)8#d 4,),)l9N#e 4,)kl9NiI!,)8aKTD,)`m#G p]Oc=l9N.5, C6f7:j !+*%#ogH _L
! nB" bB" c=:j nB" ,)# q 4l9S<4PES<,+(U\ 4l9#6,) FBkeyword matching^A;^VZ@ 4l9103(&2#-'+/J R ! rlearning-to-rank#d WQZM[N
Introduction 5$-%/" entity 5$+-% 63#'47 ,1 .*)2&.*)2distant supervision0( !
self-training self-training: %" ,!-$unlabeled (*#. )
, proposed: '+& ,self-training-
relation relation
: relation prediction relation retrieval :unlabelled
Prediction !
! learning-to-rank" Pointwise Approach:
Pairwise Approach :
Unlabeled& ". unlabeled self-training & %, * →+(%,
→& ".)# /". !'$ )- EM
TACRED:
None