$30 off During Our Annual Pro Sale. View Details »

Clément Elvira

S³ Seminar
October 04, 2019

Clément Elvira

(PANAMA research group, Iniria, CNRS, IRISA - Rennes)

https://s3-seminar.github.io/seminars/clement-elvira

Title — Safe squeezing for antisparse coding

Abstract — Spreading the information over all coefficients of a representation is a desirable property in many applications such as digital communication or machine learning. This so-called antisparse representation can be obtained by solving a convex program involving a $\ell_\infty$-norm penalty combined with a quadratic discrepancy. In this talk, we propose a new methodology, dubbed safe squeezing, to accelerate the computation of antisparse representation. We describe a test that allows to detect saturated entries in the solution of the optimization problem. The contribution of these entries is compacted into a single vector, resulting in a form of dimensionality reduction. We propose two algorithms to solve the latter lower dimensional problem. Numerical experiments show both the effectiveness of the saturation detection tests and that the proposed procedures lead to significant computational gains as compared to existing methods.

Biography — Clément Elvira is a postdoctoral researcher at Inria Rennes - Bretagne atlantique and part of the BECOSE project. He is working under the supervision of Cédric Herzet, Rémi Gribonval and Charles Soussen. He was a PhD student from october, 2014 to november, 2017 at CRIStAL in Lille, France, under the supervision of Pierre Chainais and Nicolas Dobigeon, and he was part of the SigMA group at CRIStAL.

S³ Seminar

October 04, 2019
Tweet

More Decks by S³ Seminar

Other Decks in Research

Transcript

  1. Safe squeezing for antisparse coding
    Clément Elvira — joint work with Cédric Herzet
    CentraleSupélec, L2S, Inverse Problem Group (GPI)
    4 Octobre 2019

    View Slide

  2. Antisparse coding

    View Slide

  3. Inverse / Learning problems
    Given
    • Acquisition matrix A ∈ Rm×n m < n
    • Observation y ≃ Ax0 ∈ Rm
    Goal: recover x0
    from
    arg min
    x∈Rn
    1
    2
    ∥y − Ax∥2
    2
    Infinite number of solutions
    −→ ill posed problem
    Clément Elvira Séminaire équipe SCEE 1/28
    1/28

    View Slide

  4. Penalized problem
    Penalized problem
    x⋆ ∈ arg min
    x∈Rn
    1
    2
    ∥y − Ax∥2
    2
    + Reg(x)
    The choice of Reg should
    • reduce the number of solutions
    • favor solutions with desirable properties
    • allow for fast algorithms
    Clément Elvira Séminaire équipe SCEE 2/28
    2/28

    View Slide

  5. Penalized problem
    Penalized problem
    x⋆ ∈ arg min
    x∈Rn
    1
    2
    ∥y − Ax∥2
    2
    + Reg(x)
    The choice of Reg should
    • reduce the number of solutions
    • favor solutions with desirable properties
    • allow for fast algorithms
    Popular choice of Reg −→ convex function
    Clément Elvira Séminaire équipe SCEE 2/28
    2/28

    View Slide

  6. From sparse coding to antisparse coding
    Clément Elvira Séminaire équipe SCEE 3/28
    3/28
    0 20 40 60 80 100 120
    0
    0.2
    |x(n)|
    Parcimonieux
    0 20 40 60 80 100 120
    0
    0.2
    |x(n)|
    Ridge
    0 20 40 60 80 100 120
    0
    0.2
    |x(n)|
    Antiparcimonieux
    20 40 60 80 100 120
    indice n
    0
    0.5
    1
    Reg(x) = λ∥x∥1
    ⇒ sparsity
    Reg(x) = λ∥x∥2
    2
    ⇒ energy
    Reg(x) = λ∥x∥∞
    ⇒ amplitude

    View Slide

  7. Application 1 / 3
    • Peak to Average Power Ratio (PAPR) reduction
    Studer & Larsson (2013)
    ∀x ∈ Rn, PAPR(x) =
    n∥x∥2

    ∥x∥2
    2
    Courtesy of Studer and Larsson
    sw = Hw xw yw = Hw xw + nw
    Clément Elvira Séminaire équipe SCEE 4/28
    4/28

    View Slide

  8. Application 2 / 3
    • Robotic: Uniform power allocation Cadzow (1971)
    • Cinematic redundant system
    • Uniform spread of electric power
    Clément Elvira Séminaire équipe SCEE 5/28
    5/28
    y = A
















    x(1)
    0
    .
    .
    .
    x(1)
    p
    .
    .
    .
    x(t)
    0
    .
    .
    .
    x(t)
    p
















    View Slide

  9. Application 2 / 3
    • Robotic: Uniform power allocation Cadzow (1971)
    • Cinematic redundant system
    • Uniform spread of electric power
    Clément Elvira Séminaire équipe SCEE 5/28
    5/28
    y = A
















    x(1)
    0
    .
    .
    .
    x(1)
    p
    .
    .
    .
    x(t)
    0
    .
    .
    .
    x(t)
    p
















    View Slide

  10. Application 3 / 3
    ML: Approximate Nearest Neighbor search
    Jegou, Furon and Fuchs (2012)
    Idea: Learn a higher dimensional
    representation
    • x(i) = ±α
    =⇒ binarization + privacy
    • binary distance = XOR
    =⇒ faster
    Clément Elvira Séminaire équipe SCEE 6/28
    6/28
    x1 x2
    d(x1
    , x2
    )
    x1
    x2

    View Slide

  11. Application 3 / 3
    ML: Approximate Nearest Neighbor search
    Jegou, Furon and Fuchs (2012)
    Idea: Learn a higher dimensional
    representation
    • x(i) = ±α
    =⇒ binarization + privacy
    • binary distance = XOR
    =⇒ faster
    Clément Elvira Séminaire équipe SCEE 6/28
    6/28
    x1 x2
    d(x1
    , x2
    )
    x1
    x2

    View Slide

  12. Safe squeezing
    for
    antisparse coding

    View Slide

  13. Computing antisparse representation
    Optimization problem x⋆ ∈ arg min
    x∈Rn
    1
    2
    ∥y − Ax∥2
    2
    + λ∥x∥∞
    −→ Convex, coercive
    Optimization methods
    Clément Elvira Séminaire équipe SCEE 7/28
    7/28

    View Slide

  14. Computing antisparse representation
    Optimization problem x⋆ ∈ arg min
    x∈Rn
    1
    2
    ∥y − Ax∥2
    2
    + λ∥x∥∞
    −→ Convex, coercive
    Optimization methods
    • Heuristic to match the optimality conditions [Fuchs, 2011]
    ◦ add / remove entries from the set of saturated entries
    Clément Elvira Séminaire équipe SCEE 7/28
    7/28

    View Slide

  15. Computing antisparse representation
    Optimization problem x⋆ ∈ arg min
    x∈Rn
    1
    2
    ∥y − Ax∥2
    2
    + λ∥x∥∞
    −→ Convex, coercive
    Optimization methods
    • Heuristic to match the optimality conditions [Fuchs, 2011]
    ◦ add / remove entries from the set of saturated entries
    • Proximal Gradient: FITRA [Studer & Larsson, 2013]
    ◦ x(t+1) = proxλ∥·∥

    (x(t) − α∇f (x(t)))
    Clément Elvira Séminaire équipe SCEE 7/28
    7/28

    View Slide

  16. Computing antisparse representation
    Optimization problem x⋆ ∈ arg min
    x∈Rn
    1
    2
    ∥y − Ax∥2
    2
    + λ∥x∥∞
    −→ Convex, coercive
    Optimization methods
    • Heuristic to match the optimality conditions [Fuchs, 2011]
    ◦ add / remove entries from the set of saturated entries
    • Proximal Gradient: FITRA [Studer & Larsson, 2013]
    ◦ x(t+1) = proxλ∥·∥

    (x(t) − α∇f (x(t)))
    • Bayesian framework [Elvira et al., 2017]
    ◦ Democratic prior p(x) ∝ exp
    (
    −λ∥x∥

    )
    ◦ Gibbs sampler / Proximal MCMC
    Clément Elvira Séminaire équipe SCEE 7/28
    7/28

    View Slide

  17. Connections with inverse problems involving sparsity
    Lasso Find x⋆ ∈ arg min
    x∈Rn
    1
    2
    ∥y − Ax∥2
    2
    + λ∥x∥1
    −→ Promotes sparsity
    Unused feature
    Safe screening
    [El ghaoui et al., 2010] [Fercoq et al., 2015] [Fraga-Dantas et al., 2018] [Dorfler et al., 2019]
    Clément Elvira Séminaire équipe SCEE 8/28
    8/28

    View Slide

  18. Connections with inverse problems involving sparsity
    Lasso Find x⋆ ∈ arg min
    x∈Rn
    1
    2
    ∥y − Ax∥2
    2
    + λ∥x∥1
    −→ Promotes sparsity
    Unused feature ←→ Saturation
    Safe screening ←→ Safe squeezing
    Clément Elvira Séminaire équipe SCEE 8/28
    8/28

    View Slide

  19. From sparse coding to antisparse coding
    Clément Elvira Séminaire équipe SCEE 8/28
    8/28
    0 20 40 60 80 100 120
    0
    0.2
    |x(n)|
    Parcimonieux
    0 20 40 60 80 100 120
    0
    0.2
    |x(n)|
    Ridge
    0 20 40 60 80 100 120
    0
    0.2
    |x(n)|
    Antiparcimonieux
    20 40 60 80 100 120
    indice n
    0
    0.5
    1
    Reg(x) = λ∥x∥1
    ⇒ sparsity
    Reg(x) = λ∥x∥2
    2
    ⇒ energy
    Reg(x) = λ∥x∥∞
    ⇒ amplitude

    View Slide

  20. Take home message
    • It is possible to dynamically detect saturated entries
    • It leads to consider an equivalent lower dimensional problem
    • It provides faster algorithm at (almost) no additional cost
    • It is experimentally validated
    Clément Elvira Séminaire équipe SCEE 9/28
    9/28

    View Slide

  21. Notions of saturation
    Recall x⋆ ∈ arg min
    x∈Rn
    1
    2
    ∥y − Ax∥2
    2
    + λ∥x∥∞
    Definition: saturated entry
    entry i is saturated iff x⋆(i) = ±∥x⋆∥∞
    Clément Elvira Séminaire équipe SCEE 10/28
    10/28

    View Slide

  22. Notions of saturation
    Recall x⋆ ∈ arg min
    x∈Rn
    1
    2
    ∥y − Ax∥2
    2
    + λ∥x∥∞
    Definition: saturated entry
    entry i is saturated iff x⋆(i) = ±∥x⋆∥∞
    Proposition [Fuchs,2011]
    Generically, x⋆ has at most m − 1 non saturated entries
    Similar results for “antisparse” Basis pursuit
    m − 1 can be small compared to n
    (n ≫ m)
    Clément Elvira Séminaire équipe SCEE 11/28
    11/28

    View Slide

  23. Towards a lower dimensional problem
    Let I⋆
    +
    ≜ {i | x⋆(i) = +∥x⋆∥∞
    } and I⋆

    ≜ {i | x⋆(i) = −∥x⋆∥∞
    }
    Sets of saturated entries
    Clément Elvira Séminaire équipe SCEE 12/28
    12/28

    View Slide

  24. Towards a lower dimensional problem
    Let I⋆
    +
    ≜ {i | x⋆(i) = +∥x⋆∥∞
    } and I⋆

    ≜ {i | x⋆(i) = −∥x⋆∥∞
    }
    Sets of saturated entries
    If we know I+ ⊂ I⋆
    +
    and I− ⊂ I⋆

    Define
    • B = AIc
    • s =

    ℓ∈I+
    ai −

    ℓ∈I−
    ai
    Clément Elvira Séminaire équipe SCEE 12/28
    12/28

    View Slide

  25. Towards a lower dimensional problem
    Let I⋆
    +
    ≜ {i | x⋆(i) = +∥x⋆∥∞
    } and I⋆

    ≜ {i | x⋆(i) = −∥x⋆∥∞
    }
    Sets of saturated entries
    If we know I+ ⊂ I⋆
    +
    and I− ⊂ I⋆

    Define
    • B = AIc
    • s =

    ℓ∈I+
    ai −

    ℓ∈I−
    ai
    Equivalent lower dimensional problem [To appear]
    (q⋆, w⋆) ∈ arg min
    q,w∈Rcard(Ic )×R
    1
    2
    ∥y − Bq − ws∥2
    2
    + λw s.t. ∥q∥∞
    ≤ w
    Clément Elvira Séminaire équipe SCEE 12/28
    12/28

    View Slide

  26. Towards a lower dimensional problem
    Let I⋆
    +
    ≜ {i | x⋆(i) = +∥x⋆∥∞
    } and I⋆

    ≜ {i | x⋆(i) = −∥x⋆∥∞
    }
    Sets of saturated entries
    If we know I+ ⊂ I⋆
    +
    and I− ⊂ I⋆

    Define
    • B = AIc
    • s =

    ℓ∈I+
    ai −

    ℓ∈I−
    ai
    Equivalent lower dimensional problem [To appear]
    (q⋆, w⋆) ∈ arg min
    q,w∈Rcard(Ic )×R
    1
    2
    ∥y − Bq − ws∥2
    2
    + λw s.t. ∥q∥∞
    ≤ w
    −→ Can we (dynamically) detect saturated entries? ←−
    Clément Elvira Séminaire équipe SCEE 12/28
    12/28

    View Slide

  27. Detecting saturated entries
    Theorem [to appear]
    Given a known polytope UI
    Let u⋆ = arg min
    u∈UI
    1
    2
    ∥y − u∥2
    2
    Clément Elvira Séminaire équipe SCEE 13/28
    13/28

    View Slide

  28. UI
    y
    u⋆

    View Slide

  29. Detecting saturated entries
    Theorem [to appear]
    Given a known polytope UI
    Let u⋆ = arg min
    u∈UI
    1
    2
    ∥y − u∥2
    2
    Then aT
    i
    u⋆ > 0 =⇒ x⋆(i) is saturated
    + sign given by sign(aT
    i
    u⋆)
    Clément Elvira Séminaire équipe SCEE 14/28
    14/28

    View Slide

  30. UI
    y
    u⋆ aT
    1
    u
    aT
    2
    u
    aT
    3
    u

    View Slide

  31. Detecting saturated entries
    Theorem [to appear]
    Given a known polytope UI
    Let u⋆ = arg min
    u∈UI
    1
    2
    ∥y − u∥2
    2
    Then aT
    i
    u⋆ > 0 =⇒ x⋆(i) is saturated
    + sign given by sign(aT
    i
    u⋆)
    • Not a heuristic
    • Computationally simple
    Clément Elvira Séminaire équipe SCEE 15/28
    15/28

    View Slide

  32. From safe region to safe sphere
    Finding u⋆ is (almost) as difficult as finding x⋆
    Clément Elvira Séminaire équipe SCEE 16/28
    16/28

    View Slide

  33. From safe region to safe sphere
    Finding u⋆ is (almost) as difficult as finding x⋆
    Idea: perform the test without computing u⋆
    Clément Elvira Séminaire équipe SCEE 16/28
    16/28

    View Slide

  34. From safe region to safe sphere
    Finding u⋆ is (almost) as difficult as finding x⋆
    Idea: perform the test without computing u⋆
    −→ Resort to a safe region
    A subset S is called Safe region iff u⋆ ∈ S [El Ghaoui et al., 2010]
    min
    u∈S
    ai
    Tu > 0 =⇒ ai
    Tu⋆ > 0
    =⇒ x⋆(i) is saturated
    Clément Elvira Séminaire équipe SCEE 16/28
    16/28

    View Slide

  35. UI
    y
    u⋆ aT
    1
    u
    aT
    2
    u
    aT
    3
    u
    S

    View Slide

  36. From safe region to safe sphere
    Finding u⋆ is (almost) as difficult as finding x⋆
    Idea: perform the test without computing u⋆
    −→ Resort to a safe region
    A subset S is called Safe region iff u⋆ ∈ S [El Ghaoui et al., 2010]
    min
    u∈S
    ai
    Tu > 0 =⇒ ai
    Tu⋆ > 0
    =⇒ x⋆(i) is saturated
    Safe sphere:
    S = B(c, r) and minu∈B(c,r)
    ai
    Tu = ai
    Tc − r∥ai ∥2
    Close form solution!
    Clément Elvira Séminaire équipe SCEE 17/28
    17/28

    View Slide

  37. Safe sphere design
    Goal
    Find c and r such that u⋆ ∈ B(c, r)
    Clément Elvira Séminaire équipe SCEE 18/28
    18/28

    View Slide

  38. Safe sphere design
    Dual problem
    Find u⋆ = arg min
    u∈UI
    ∥y − u∥2
    2
    −→ Projection onto the convex set UI
    !
    Clément Elvira Séminaire équipe SCEE 19/28
    19/28

    View Slide

  39. Safe sphere design
    Dual problem
    Find u⋆ = arg min
    u∈UI
    ∥y − u∥2
    2
    −→ Projection onto the convex set UI
    !
    If one knows some u0 ∈ UI
    , then by definition
    ∥y − u⋆∥2
    2
    ≤ ∥y − u0∥2
    2
    −→ u⋆ belongs to a Sphere!
    Clément Elvira Séminaire équipe SCEE 19/28
    19/28

    View Slide

  40. Safe sphere design
    Goal
    Find c and r such that u⋆ ∈ B(c, r)
    Choose u0 ∈ UI
    ST 1:
    c = y
    r = ∥y − u0∥2
    Clément Elvira Séminaire équipe SCEE 20/28
    20/28
    typical use: done once
    for all before runtime

    View Slide

  41. UI
    y
    u⋆

    View Slide

  42. Visualizing the ST1 sphere
    UI
    y
    u⋆
    u(0)
    aT
    1
    u
    aT
    2
    u
    aT
    3
    u

    View Slide

  43. Visualizing the ST1 sphere
    UI
    y
    u⋆
    u(0)
    u(1)
    aT
    1
    u
    aT
    2
    u
    aT
    3
    u

    View Slide

  44. Visualizing the ST1 sphere
    UI
    y
    u⋆
    u(0)
    u(1)


    u(t)
    aT
    1
    u
    aT
    2
    u
    aT
    3
    u

    View Slide

  45. Safe sphere design
    Goal
    Find c and r such that u⋆ ∈ B(c, r)
    Choose u0 ∈ UI
    ST 1:
    c = y
    r = ∥y − u0∥2
    GAP sphere: [Fercoq et al, 2015]
    c = u0
    r =

    2gap(x0, u0)
    Clément Elvira Séminaire équipe SCEE 21/28
    21/28
    typical use: done once
    for all before runtime
    typical use:
    • Dynamically
    • u(t) = projUI
    (y − Ax(t))
    • radius tends to 0

    View Slide

  46. Visualizing the GAP sphere
    UI
    y
    u⋆
    u(0) √
    gap(x(0), u(0))
    aT
    1
    u
    aT
    2
    u
    aT
    3
    u

    View Slide

  47. Visualizing the GAP sphere
    UI
    y
    u⋆
    u(0)
    u(1)
    aT
    1
    u
    aT
    2
    u
    aT
    3
    u

    View Slide

  48. Visualizing the GAP sphere
    UI
    y
    u⋆
    u(0)
    u(1)


    u(t)
    aT
    1
    u
    aT
    2
    u
    aT
    3
    u

    View Slide

  49. Algorithms

    View Slide

  50. Principle of Dynamic squeezing
    x(0) = 0n
    , I(0) = ∅ ;
    u(0) = dualscal(y);
    t = 1 // iteration index
    repeat
    // Iterations of the optimization procedure
    (x(t), u(t)) = optim_update(x(t−1), u(t−1), I(t))
    // Update iteration index
    t = t + 1
    until convergence criterion is met;
    Output: x(t), I(t)
    Clément Elvira Séminaire équipe SCEE 22/28
    22/28

    View Slide

  51. Principle of Dynamic squeezing
    x(0) = 0n
    , I(0) = ∅ ;
    u(0) = dualscal(y);
    t = 1 // iteration index
    repeat
    // Squeezing test
    (c(t), r(t)) = sphere_param(x(t−1), u(t−1), I(t−1)) ;
    I(t−½) = squeezing_test(c(t), r(t)) ;
    I(t) = I(t−½) ∪ I(t−1) ;
    // Iterations of the optimization procedure
    (x(t), u(t)) = optim_update(x(t−1), u(t−1), I(t))
    // Update iteration index
    t = t + 1
    until convergence criterion is met;
    Output: x(t), I(t)
    Clément Elvira Séminaire équipe SCEE 22/28
    22/28

    View Slide

  52. A word about optimization procedure
    Optimization problem
    (q⋆, w⋆) ∈ arg min
    q,w∈Rcard(Ic )×R
    1
    2
    ∥y − Bq − ws∥2
    2
    + λw s.t.
    {
    +q ≤ w
    −q ≤ w
    Fitra is not fitted
    Clément Elvira Séminaire équipe SCEE 23/28
    23/28

    View Slide

  53. A word about optimization procedure
    Optimization problem
    (q⋆, w⋆) ∈ arg min
    q,w∈Rcard(Ic )×R
    1
    2
    ∥y − Bq − ws∥2
    2
    + λw s.t.
    {
    +q ≤ w
    −q ≤ w
    Fitra is not fitted
    • Squeezed Fitra
    ◦ Projected gradient algorithm
    ◦ !
    △ Require the projection onto a cone
    ◦ !
    △ Conditioning −→ scaled algorithm
    Clément Elvira Séminaire équipe SCEE 23/28
    23/28

    View Slide

  54. A word about optimization procedure
    Optimization problem
    (q⋆, w⋆) ∈ arg min
    q,w∈Rcard(Ic )×R
    1
    2
    ∥y − Bq − ws∥2
    2
    + λw s.t.
    {
    +q ≤ w
    −q ≤ w
    Fitra is not fitted
    • Squeezed Fitra
    ◦ Projected gradient algorithm
    ◦ !
    △ Require the projection onto a cone
    ◦ !
    △ Conditioning −→ scaled algorithm
    Clément Elvira Séminaire équipe SCEE 23/28
    23/28
    ws ←− w
    s
    ∥s∥2

    View Slide

  55. A word about optimization procedure
    Optimization problem
    (q⋆, w⋆) ∈ arg min
    q,w∈Rcard(Ic )×R
    1
    2
    ∥y − Bq − ws∥2
    2
    + λw s.t.
    {
    +q ≤ w
    −q ≤ w
    Fitra is not fitted
    • Squeezed Fitra
    ◦ Projected gradient algorithm
    ◦ !
    △ Require the projection onto a cone
    ◦ !
    △ Conditioning −→ scaled algorithm
    • Squeezed Frank-Wolfe
    Clément Elvira Séminaire équipe SCEE 23/28
    23/28
    ws ←− w
    s
    ∥s∥2

    View Slide

  56. Numerical experiments

    View Slide

  57. Percentage of screened variables of iteration
    A ∈ R100×150 A[i, j] ∈ [0, 1] GAP sphere
    0.1
    0.2
    0.3
    0.4
    0.5
    0.6
    0.7
    0.8
    / max
    2
    4
    6
    8
    10
    12
    log2
    (T)
    0.0 0.2 0.4 0.6 0.8 1.0
    Clément Elvira Séminaire équipe SCEE 24/28
    24/28

    View Slide

  58. Complexity savings
    A ∈ R100×150 A[i, j] ∈ [0, 1] GAP sphere
    0.0 0.1 0.2 0.3 0.4 0.5 0.6
    log10
    ( / max
    )
    105
    106
    107
    108
    109
    1010
    number of operations
    • Fitra
    • Squeezed Fitra
    • Frank-Wolfe
    • Squeezed Frank-wolfe
    Clément Elvira Séminaire équipe SCEE 25/28
    25/28

    View Slide

  59. Benchmark
    A ∈ R100×150 A[i, j] ∈ [0, 1] Budget: 108 operations
    10 16
    10 13
    10 10 10 7 10 4 10 1
    (Dual gap)
    0%
    20%
    40%
    60%
    80%
    100%
    %run such that gap<
    / max
    =0.3
    10 16
    10 13
    10 10 10 7 10 4 10 1
    (Dual gap)
    / max
    =0.8
    • Fitra
    • Squeezed Fitra
    • Frank-Wolfe
    • Squeezed Frank-wolfe
    Clément Elvira Séminaire équipe SCEE 26/28
    26/28

    View Slide

  60. Squeezing test - at no cost?
    • Computing u: Dual scaling of residual vector
    O(1) ✓
    • Squeezing test: inner product aT
    i
    u
    ≡ gradient descent step → already done ✓
    • Squeezing test: radius r
    ≡ dual gap → already computed to monitor convergence ✓
    • Proximity operator: sorting O(n log(n)) n is decreasing here
    can be faster than computing the prox of the ℓ∞
    -norm O(n)
    Clément Elvira Séminaire équipe SCEE 27/28
    27/28

    View Slide

  61. Conclusion - prospects
    • It is possible to dynamically detect saturated entries
    • It leads to an equivalent low dimensional problem
    • We obtain faster algorithms at (almost) no additional cost
    Prospects
    • Other safe regions (dome, truncated dome…)
    • Nesterov acceleration?
    • Extension to more BLasso? continuous dictionaries?
    stay tuned!
    https://arxiv.org/abs/1911.07508
    Toolbox: https://gitlab.inria.fr/celvira/safe-squeezing
    Clément Elvira Séminaire équipe SCEE 28/28
    28/28

    View Slide

  62. Merci de votre attention!
    stay tuned!
    https://arxiv.org/abs/1911.07508
    Toolbox: https://gitlab.inria.fr/celvira/safe-squeezing

    View Slide

  63. Ideal test to detect saturated entries
    Theorem [to appear]
    Let u⋆ = arg max
    u∈UI
    1
    2
    ∥y∥2
    2
    − 1
    2
    ∥y − u∥2
    2
    with UI
    a known polytope
    Then ai
    Tu⋆ > 0 =⇒ x⋆(i) is saturated
    + sign given by sign(ai
    Tu⋆)
    Clément Elvira Séminaire équipe SCEE 1/1
    1/1

    View Slide

  64. Ideal test to detect saturated entries
    Theorem [to appear]
    Let u⋆ = arg max
    u∈UI
    1
    2
    ∥y∥2
    2
    − 1
    2
    ∥y − u∥2
    2
    with UI
    a known polytope
    Then ai
    Tu⋆ > 0 =⇒ x⋆(i) is saturated
    + sign given by sign(ai
    Tu⋆)
    1. Slater conditions involves
    ∃v⋆
    +
    s.t. v⋆
    +
    (i)(x⋆(i) − w⋆) = 0
    Clément Elvira Séminaire équipe SCEE 1/1
    1/1

    View Slide

  65. Ideal test to detect saturated entries
    Theorem [to appear]
    Let u⋆ = arg max
    u∈UI
    1
    2
    ∥y∥2
    2
    − 1
    2
    ∥y − u∥2
    2
    with UI
    a known polytope
    Then ai
    Tu⋆ > 0 =⇒ x⋆(i) is saturated
    + sign given by sign(ai
    Tu⋆)
    1. Slater conditions involves
    ∃v⋆
    +
    s.t. v⋆
    +
    (i)(x⋆(i) − w⋆) = 0
    2. 1st order optimality conditions involve
    v⋆
    +
    (i) = ai
    Tu⋆
    Clément Elvira Séminaire équipe SCEE 1/1
    1/1

    View Slide

  66. Ideal test to detect saturated entries
    Theorem [to appear]
    Let u⋆ = arg max
    u∈UI
    1
    2
    ∥y∥2
    2
    − 1
    2
    ∥y − u∥2
    2
    with UI
    a known polytope
    Then ai
    Tu⋆ > 0 =⇒ x⋆(i) is saturated
    + sign given by sign(ai
    Tu⋆)
    1. Slater conditions involves
    ∃v⋆
    +
    s.t. v⋆
    +
    (i)(x⋆(i) − w⋆) = 0
    2. 1st order optimality conditions involve
    v⋆
    +
    (i) = ai
    Tu⋆
    3. If v⋆
    +
    (i) ̸= 0 then
    x⋆(i) = +w⋆ necessarily
    Clément Elvira Séminaire équipe SCEE 1/1
    1/1

    View Slide

  67. Ideal test to detect saturated entries
    Theorem [to appear]
    Let u⋆ = arg max
    u∈UI
    1
    2
    ∥y∥2
    2
    − 1
    2
    ∥y − u∥2
    2
    with UI
    a known polytope
    Then ai
    Tu⋆ > 0 =⇒ x⋆(i) is saturated
    + sign given by sign(ai
    Tu⋆)
    1. Slater conditions involves
    ∃v⋆
    +
    s.t. v⋆
    +
    (i)(x⋆(i) − w⋆) = 0
    2. 1st order optimality conditions involve
    v⋆
    +
    (i) = ai
    Tu⋆
    3. If v⋆
    +
    (i) ̸= 0 then
    x⋆(i) = +w⋆ necessarily
    Clément Elvira Séminaire équipe SCEE 1/1
    1/1
    + u⋆ cannot be
    orthogonal to all
    columns of A.

    View Slide