Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Push du Machine Learning dans to app
Search
Sandra Dupre
July 23, 2018
Programming
0
160
Push du Machine Learning dans to app
When Tensorflow and MLKit rule the world...
Sandra Dupre
July 23, 2018
Tweet
Share
More Decks by Sandra Dupre
See All by Sandra Dupre
To Smartphones and Beyond: Screens Everywhere
sandraddev
0
42
Do you want an easy way to add Machine Learning into your app?
sandraddev
0
120
Push some Machine Learning into your App
sandraddev
2
40
Other Decks in Programming
See All in Programming
Honoアップデート 2025年夏
yusukebe
1
900
TDD 実践ミニトーク
contour_gara
1
280
AIレビュアーをスケールさせるには / Scaling AI Reviewers
technuma
2
240
TROCCO×dbtで実現する人にもAIにもやさしいデータ基盤
nealle
0
400
Google I/O recap web編 大分Web祭り2025
kponda
0
2.9k
Kiroで始めるAI-DLC
kaonash
2
520
パッケージ設計の黒魔術/Kyoto.go#63
lufia
3
410
AIコーディングAgentとの向き合い方
eycjur
0
250
Oracle Database Technology Night 92 Database Connection control FAN-AC
oracle4engineer
PRO
1
370
旅行プランAIエージェント開発の裏側
ippo012
2
710
テストカバレッジ100%を10年続けて得られた学びと品質
mottyzzz
2
440
AIを活用し、今後に備えるための技術知識 / Basic Knowledge to Utilize AI
kishida
19
4.5k
Featured
See All Featured
A Modern Web Designer's Workflow
chriscoyier
696
190k
The Success of Rails: Ensuring Growth for the Next 100 Years
eileencodes
46
7.6k
YesSQL, Process and Tooling at Scale
rocio
173
14k
Rails Girls Zürich Keynote
gr2m
95
14k
Fireside Chat
paigeccino
39
3.6k
実際に使うSQLの書き方 徹底解説 / pgcon21j-tutorial
soudai
PRO
185
54k
The Straight Up "How To Draw Better" Workshop
denniskardys
236
140k
Unsuck your backbone
ammeep
671
58k
The Myth of the Modular Monolith - Day 2 Keynote - Rails World 2024
eileencodes
26
3k
Building Flexible Design Systems
yeseniaperezcruz
328
39k
Learning to Love Humans: Emotional Interface Design
aarron
273
40k
How STYLIGHT went responsive
nonsquared
100
5.8k
Transcript
Push du Machine Learning dans ton app … When TensorFlow
and ML Kit rule the world
None
None
Machine Learning
Machine learning ? Supervisé Arbre de décision Régression logistique Boosting
Réseau de Neurones … Non Supervisé Clustering K-moyenne ... Par renforcement Agent autonome capable d’apprendre de ses erreurs
Machine learning ? Supervisé Arbre de décision Régression logistique Boosting
Réseau de Neurones … Non Supervisé Clustering K-moyenne ... Par renforcement Agent autonome capable d’apprendre de ses erreurs
Un Neurone Opération Linéaire Fonction Filtre input 1 input n
output 1 output 1
Réseau neuronal convolutif R E S H A P E
None
TensorFlow Outils de calcul numérique haute performance Réseau de neurones
via Deep Learning Possède deux versions Mobile Open Source Made By Google Brain
None
Modèles Pré entraînés
Inception V3 MobileNet Smart Reply
Inception V3 MobileNet Smart Reply ImageNet trained with trained with
Accuracy ++ Poids - Accuracy + Poids ++
Inception V3 MobileNet Smart Reply ImageNet trained with trained with
Accuracy ++ Poids - Accuracy + Poids ++
→ Ré-entraîné MobileNet
Classer les images
python retrain.py \ --image_dir monkey \ --output_graph model/graph.pb \ --output_labels
model/label.txt \ --tfhub_module https://tfhub.dev/google/imagenet/mobilenet_v1_050_224/quantops/feature_vector/1 retrain.py https://www.tensorflow.org/tutorials/image_retraining
python retrain.py \ --image_dir monkey \ --output_graph model/graph.pb \ --output_labels
model/label.txt \ --tfhub_module https://tfhub.dev/google/imagenet/mobilenet_v1_050_224/quantops/feature_vector/1 retrain.py https://www.tensorflow.org/tutorials/image_retraining
python retrain.py \ --image_dir monkey \ --output_graph model/graph.pb \ --output_labels
model/label.txt \ --tfhub_module https://tfhub.dev/google/imagenet/mobilenet_v1_050_224/quantops/feature_vector/1 retrain.py https://www.tensorflow.org/tutorials/image_retraining
python retrain.py \ --image_dir monkey \ --output_graph model/graph.pb \ --output_labels
model/label.txt \ --tfhub_module https://tfhub.dev/google/imagenet/mobilenet_v1_050_224/quantops/feature_vector/1 retrain.py https://www.tensorflow.org/tutorials/image_retraining
Sauf que… Le modèle créé ne fonctionne pas Solution ?
Utiliser le retrain.py du codelab
python codeLab/tensorflow-for-poets-2/scripts/retrain.py \ --how_many_training_steps=500 \ --model_dir=model/ \ --summaries_dir=tf_files/training_summaries/mobilenet_0.50_224 \ --output_graph=model/graph.pb
\ --output_labels=model/label.txt \ --architecture=mobilenet_0.50_224 \ --image_dir=monkey retrain.py https://codelabs.developers.google.com/codelabs/tensorflow-for-poets/
TF model person label.txt
TensorFlow Mobile
TensorFlow Lite
Solution allégée Utilise des modèles en FlatBuffers Optimisé pour le
mobile Supporte une partie des opérations de TensorFlow Considéré encore comme une contribution à TensorFlow TensorFlow Lite ?
Optimisations : Quantization : FLOAT32 → BYTE8 Freeze : Couper
les branches inutiles pour la prédiction
T O C O TENSORFLOW LITE OPTIMIZING CONVERTER Saved Model
ou Frozen Graph → FlatBuffer
TOCO bazel run tensorflow/contrib/lite/toco:toco -- \ --input_file=model/graph.pb \ --input_format=TENSORFLOW_GRAPHDEF \
--output_format=TFLITE \ --output_file=model/graph.tflite \ --inference_type=FLOAT \ --input_shape=1,224,224,3 \ --input_array=input \ --output_array=final_result \ --input_data_type=FLOAT
TOCO bazel run tensorflow/contrib/lite/toco:toco -- \ --input_file=model/graph.pb \ --input_format=TENSORFLOW_GRAPHDEF \
--output_format=TFLITE \ --output_file=model/graph.tflite \ --inference_type=FLOAT \ --input_shape=1,224,224,3 \ --input_array=input \ --output_array=final_result \ --input_data_type=FLOAT
TOCO bazel run tensorflow/contrib/lite/toco:toco -- \ --input_file=model/graph.pb \ --input_format=TENSORFLOW_GRAPHDEF \
--output_format=TFLITE \ --output_file=model/graph.tflite \ --inference_type=FLOAT \ --input_shape=1,224,224,3 \ --input_array=input \ --output_array=final_result \ --input_data_type=FLOAT
TOCO bazel run tensorflow/contrib/lite/toco:toco -- \ --input_file=model/graph.pb \ --input_format=TENSORFLOW_GRAPHDEF \
--output_format=TFLITE \ --output_file=model/graph.tflite \ --inference_type=FLOAT \ --input_shape=1,224,224,3 \ --input_array=input \ --output_array=final_result \ --input_data_type=FLOAT
TOCO (Quantized Model) bazel run tensorflow/contrib/lite/toco:toco -- \ --input_file=model/graph.pb \
--input_format=TENSORFLOW_GRAPHDEF \ --output_format=TFLITE \ --output_file=model/graph.tflite \ --inference_type=QUANTIZED_UINT8 \ --input_shape=1,224,224,3 \ --input_array=Placeholder \ --output_array=final_result \ --default_ranges_min=0 \ --default_ranges_max=6
Intégration sur Android : FlatBuffer Model + labels.txt Android Assets
Image → ByteBuffer private fun fromBitmapToByteBuffer(bitmap: Bitmap): ByteBuffer { val
imgData = ByteBuffer.allocateDirect(4 * IMG_SIZE * IMG_SIZE * 3).apply { order(ByteOrder.nativeOrder()) rewind() } val pixels = IntArray(IMG_SIZE * IMG_SIZE) Bitmap.createScaledBitmap(bitmap, IMG_SIZE, IMG_SIZE, false).apply { getPixels(pixels, 0, width, 0, 0, width, height) } pixels.forEach { imgData.putFloat(((it shr 16 and 0xFF) - MEAN) / STD) imgData.putFloat(((it shr 8 and 0xFF) - MEAN) / STD) imgData.putFloat(((it and 0xFF) - MEAN) / STD) } return imgData }
Interpreter val fileInputStream = context.assets.openFd(MODEL_NAME).let { FileInputStream(it.fileDescriptor).channel.map( FileChannel.MapMode.READ_ONLY, it.startOffset, it.declaredLength
) } val interpreter = Interpreter(fileInputStream) val labels = context.assets.open("labels.txt").bufferedReader().readLines()
Run ! fun recognizeMonkey(bitmap: Bitmap) { val imgData = fromBitmapToByteBuffer(bitmap)
val outputs = Array(1, { FloatArray(labels.size) }) interpreter.run(imgData, outputs) val monkey = labels .mapIndexed { index, label -> Pair(label, outputs[0][index]) } .sortedByDescending { it.second } .first() view?.displayMonkey(monkey.first, monkey.second * 100) }
ML KIT
ML Kit: la boîte à outils Mobile Vision + Google
Cloud API + TensorFlow Lite
OCR Détection de Visages Lecture de code-barres Labelliser des images
Reconnaissance de points de repères Smart Reply
Exemple : Détection de Visages init { val options =
FirebaseVisionFaceDetectorOptions .Builder() .setClassificationType( FirebaseVisionFaceDetectorOptions .ALL_CLASSIFICATIONS ) .build() detector = FirebaseVision.getInstance().getVisionFaceDetector(options) }
fun recognizePicture(bitmap: Bitmap) { } Exemple : Détection de Visages
val firebaseVisionImage = FirebaseVisionImage.fromBitmap(bitmap) detector.detectInImage(firebaseVisionImage) .addOnSuccessListener { faces -> } .addOnFailureListener { view.displayFail() } try { if (faces.first().smilingProbability > 0.70) { view.displaySmile() } else { view.displaySad() } } catch (e: NoSuchElementException) { view.displayFail() }
CUSTOM MODEL with TensorFlow Lite
ML Kit Custom Android + iOS
ML Kit Custom Android + iOS
ML Kit Custom Android + iOS
ML Kit Custom Android + iOS
Modèle : - En local - A distance - Les
deux !
Initialisation val dataOptions = FirebaseModelInputOutputOptions .Builder() .setInputFormat(0, FirebaseModelDataType.FLOAT32, intArrayOf(1, IMG_SIZE,
IMG_SIZE, 3)) .setOutputFormat(0, FirebaseModelDataType.FLOAT32, intArrayOf(1, labels.size)) .build() val labels = context.assets.open("labels.txt").bufferedReader().readLines()
Initialisation val dataOptions = FirebaseModelInputOutputOptions .Builder() .setInputFormat(0, FirebaseModelDataType.FLOAT32, intArrayOf(1, IMG_SIZE,
IMG_SIZE, 3)) .setOutputFormat(0, FirebaseModelDataType.FLOAT32, intArrayOf(1, labels.size)) .build() val labels = context.assets.open("labels.txt").bufferedReader().readLines()
Initialisation Interpreter: Local Source val localSource = FirebaseLocalModelSource .Builder(ASSET) .setAssetFilePath("$MODEL_NAME.tflite")
.build()
Initialisation Interpreter: Cloud Source val conditions = FirebaseModelDownloadConditions .Builder() .requireWifi()
.build() val cloudSource = FirebaseCloudModelSource.Builder(MODEL_NAME) .enableModelUpdates(true) .setInitialDownloadConditions(conditions) .setUpdatesDownloadConditions(conditions) .build()
Initialisation Interpreter: Cloud Source val conditions = FirebaseModelDownloadConditions .Builder() .requireWifi()
.build() val cloudSource = FirebaseCloudModelSource.Builder(MODEL_NAME) .enableModelUpdates(true) .setInitialDownloadConditions(conditions) .setUpdatesDownloadConditions(conditions) .build()
Initialisation Interpreter: Cloud Source val conditions = FirebaseModelDownloadConditions .Builder() .requireWifi()
.build() val cloudSource = FirebaseCloudModelSource.Builder(MODEL_NAME) .enableModelUpdates(true) .setInitialDownloadConditions(conditions) .setUpdatesDownloadConditions(conditions) .build()
Initialisation Interpreter FirebaseModelManager.getInstance().apply { registerLocalModelSource(localSource) registerCloudModelSource(cloudSource) } val interpreter =
FirebaseModelInterpreter.getInstance( FirebaseModelOptions.Builder() .setCloudModelName(MODEL_NAME) .setLocalModelName(ASSET) .build() )
Run ! val inputs = FirebaseModelInputs.Builder() .add(fromBitmapToByteBuffer(bitmap)) .build() interpreter?.run(inputs, dataOptions)
?.addOnSuccessListener { val output = it.getOutput<Array<FloatArray>>(0) val label = labels.mapIndexed { index, label -> Pair(label, output[0][index]) }.sortedByDescending { it.second }.first() view?.displayMonkey(label.first, label.second*100) } ?.addOnFailureListener { view?.displayError() }
None
Mais : Téléchargement du modèle long et aléatoire Aucune indication
sur le % de téléchargement du modèle Quid des bugs de TensorFlow Lite ? TOCO, quantized model et autres incompréhensions Documentation légère Exemples peu compréhensibles (dont le code est assez sale) Côté API cher
Merci ! Références : https://firebase.google.com/docs/ml-kit/ https://codelabs.developers.google.com/codelabs/tensorflow-for-poets-2-tflite/ https://codelabs.developers.google.com/codelabs/mlkit-android/ Dataset : https://www.kaggle.com/slothkong/10-monkey-species/version/1
@SandraDdev @sandra.dupre