Lock in $30 Savings on PRO—Offer Ends Soon! ⏳
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
【CA.ai #3】ワークフローから見直すAIエージェント — 必要な場面と“選ばない”判断
Search
SatoAoaka
November 28, 2025
Programming
0
110
【CA.ai #3】ワークフローから見直すAIエージェント — 必要な場面と“選ばない”判断
https://cyberagent.connpass.com/event/371245/
SatoAoaka
November 28, 2025
Tweet
Share
Other Decks in Programming
See All in Programming
Microservices rules: What good looks like
cer
PRO
0
370
251126 TestState APIってなんだっけ?Step Functionsテストどう変わる?
east_takumi
0
290
WebRTC と Rust と8K 60fps
tnoho
2
1.8k
UIデザインに役立つ 2025年の最新CSS / The Latest CSS for UI Design 2025
clockmaker
16
6.1k
関数実行の裏側では何が起きているのか?
minop1205
1
400
Google Antigravity and Vibe Coding: Agentic Development Guide
mickey_kubo
2
120
手軽に積ん読を増やすには?/読みたい本と付き合うには?
o0h
PRO
1
130
スタートアップを支える技術戦略と組織づくり
pospome
8
14k
大体よく分かるscala.collection.immutable.HashMap ~ Compressed Hash-Array Mapped Prefix-tree (CHAMP) ~
matsu_chara
1
200
How Software Deployment tools have changed in the past 20 years
geshan
0
27k
これだけで丸わかり!LangChain v1.0 アップデートまとめ
os1ma
6
1.2k
モダンJSフレームワークのビルドプロセス 〜なぜReactは503行、Svelteは12行なのか〜
fuuki12
0
180
Featured
See All Featured
Building an army of robots
kneath
306
46k
RailsConf 2023
tenderlove
30
1.3k
The World Runs on Bad Software
bkeepers
PRO
72
12k
Understanding Cognitive Biases in Performance Measurement
bluesmoon
31
2.7k
Templates, Plugins, & Blocks: Oh My! Creating the theme that thinks of everything
marktimemedia
31
2.6k
Build The Right Thing And Hit Your Dates
maggiecrowley
38
3k
Into the Great Unknown - MozCon
thekraken
40
2.2k
Thoughts on Productivity
jonyablonski
73
4.9k
Bash Introduction
62gerente
615
210k
It's Worth the Effort
3n
187
29k
How To Stay Up To Date on Web Technology
chriscoyier
791
250k
Making the Leap to Tech Lead
cromwellryan
135
9.6k
Transcript
ワークフローから見直す AIエージェント — 必要な場面と“選ばない”判断 —
佐藤晴輝 • 所属 サイバーエージェント > AI 事業本部 • 業務内容 クリエイティブ生成AIプラットフォーム「AI
SCREAM」の バックエンドエンジニア @akp_working
1. エージェントを使って失敗した例 2. LLM/ワークフロー/エージェント 3. ワークフローの強みと弱み 4. エージェントの強みと弱み 5. まとめ
エージェントを使って 失敗した例
※これから紹介するサンプルはかなり抽象化してます 雰囲気で読み取ってください
ケーキ作成エージェント
オーブンツール • インプット 焼く内容の指定 • 副作用 焼いた結果が倉庫に保存される • レスポンス オーブンリザルトID
素材準備ツール • インプット 欲しい材料の指定 • 副作用 用意した材料が倉庫に保存される • レスポンス 材料IDのリスト
デコレーションツール • インプット ユーザーからのデザインの要望 素材のIDのリスト • 副作用 完成したケーキが倉庫に保存される※ • レスポンス
完成したケーキのID ※バーチャルケーキなので倉庫にある材料も無くならないとします
ケーキ作成エージェント • エージェントの目的 ユーザーの要望に従ってケーキを作成するエージェント • 提供されるツール 1. オーブンツール 2. 素材準備ツール
3. デコレーションツール それぞれのツールは完璧に仕事をこなし、在庫もなくならない夢のツールとします
(再掲)ケーキ作成エージェント いちごショー トが食べた い!
夢のようなツールを持ってしても 失敗した例をご紹介します
失敗ケース1 デコレーションする元がないためケーキが完成しない
失敗ケース2 ケーキは完成するが、今回用意したみかんと生クリームは使われない
失敗ケース3 ケーキは完成するがスポンジが一つ使われない
• ケース3:余計なステップの実行 エージェントが常に最短経路を選んでくれるとは限らない • ケース1:実行漏れ/順序崩れ ツールの実行順に前提条件があっても、それを守らせるのが難しい • ケース2:中間物の取り違え 今回のケーキ作成エージェントはツールの成果物をIDでしか認識していない。 「今回作った素材を使う」という判断を必ずさせるのは難しい
失敗ケースまとめ エージェントの判断次第で想定した動きをしてくれないことがある
エージェント辛い。。。 他に方法はなかったのかな?
LLM/ ワークフロー/ エージェント
エージェントとは? 定義が人によって様々 Anthropic は広義のエージェントという概念について ワークフローや(狭義 の)エージェントのようなアーキテクチャの区分があるとしています LLM/ワークフロー/エージェントという単語について 以下のページをもとに整理します https://www.anthropic.com/engineering/building-effective-agents
(拡張)LLM シンプルなモデルの呼び出しに加えて、検索やツールの実行などの拡張機能ま でを含めたもの 以降のワークフロー、エージェントが内部で利用するLLMはこれらの拡張機能が使える前提になります 引用:The augmented LLM
ワークフロー LLMとツールを「事前定義されたコードパス」で オーケストレーションするシステムのこと 実行フローは固定され、各ステップにゲートや検証を挿入できる 構成パターン例: プロンプトの連鎖/ルーティング/並列化 など
エージェント LLMが自らプロセスとツールの使用を「動的に指揮」するシステム • 計画→行動→観測を反復し、環境からの事実で進捗を評価 • チェックポイントや停止条件、HITL(人手インザループ)を組み込める • エージェントがワークフローを呼び出すことも可能 逆にワークフローが特定のステップでエージェントを呼ぶことも可能
ワークフローの強みと弱み
(再掲)ワークフロー LLMとツールを「事前定義されたコードパス」でオーケストレーションするシ ステムのこと 実行フローは固定され、各ステップにゲートや検証を挿入できる 構成パターン例: プロンプトの連鎖/ルーティング/並列化 など
ワークフローの強み • 決定的に実行できる • 条件分岐やエラーハンドリングも融通が効く • LLMの問題ではなくプログラムの問題にできる 引用:プロンプト連鎖ワークフロー 引用:ルーティングワークフロー
ワークフローを使った分岐 ショートケーキ専門LLM チョコケーキ専門LLM ルーターLLM
ワークフローの弱み • 未知のパターンへの弱さ • コンテキストの管理が難しい • 機能が増えてくると保守が困難
未知のパターンへの弱さ ショートケーキ専門LLM チョコケーキ専門LLM ルーターLLM チーズケーキを作っ て 作れないと回答するべき?近いやつで出すべき?
コンテキストの管理が難しい ショートケーキ専門LLM チョコケーキ専門LLM ルーターLLM このLLMの思考はコンテキストに残す? 残す場合はどこまで残す?
コンテキストの管理が難しい ショートケーキ専門LLM チョコケーキ専門LLM ルーターLLM このLLMの思考はコンテキストに残す? 残す場合はどこまで残す? ショートケーキ専門LLMのコンテキスト をチョコケーキ専門LLMに渡す?
機能が増えてくると保守が困難 ショートケーキ専門LLM チョコケーキ専門LLM ルーターLLM ・ ・ ・
エージェントの強みと弱み
(再掲)エージェント LLMが自らプロセスとツールの使用を「動的に指揮」するシステム • 計画→行動→観測を反復し、環境からの事実に基づいて進捗を評価 • チェックポイントや停止条件、HITL(人手インザループ)を組み込める • エージェントがワークフローを呼び出すことも可能 逆にワークフローが特定のステップでエージェントを呼ぶことも可能
エージェントの強み • 目的に対し計画→行動→観測を自律ループで遂行(途中で再計画が可能) 道のりが決まってない問題や未知のパターンへの適応力を持つ 引用:自律エージェント
自律ループ 終了条件を満たしていなければ追加の作業を実行できる イチゴが 足りな い!
自律ループ エラー内容を確認し、計画を修正できる エラー発 生! 再計画 キャンセ ル
未知パターンへの適応力 みかんケーキ を作って! りんごパイを 作って!
エージェントの弱み • ばらつき/非決定性が高く、SLAや再現性の確保が難しい 挙動が安定しない • 制御できる方法はあるが、実装難易度が高い チェックポイント/停止条件/ツール設計 など整備のコストが高い • LLMの思考が挟まるので時間と推論コストがかかる
• ケース3:余計なステップの実行 エージェントが常に最短経路を選んでくれるとは限らない • ケース1:実行漏れ/順序崩れ ツールの実行順に前提条件があっても、それを守らせるのが難しい • ケース2:中間物の取り違え 今回のケーキ作成エージェントはツールの成果物をIDでしか認識していない。 「今回作った素材を使う」という判断を必ずさせるのは難しい
(再掲)失敗ケースまとめ エージェントの判断次第で想定した動きをしてくれないことがある
まとめ
まとめ 1. 一種類のケーキのみ作れればOK -> LLM 2. いちごショートもみかんケーキも作りたい(焼く->素材作る->デコる) 単発LLMでは済まないが固定の手順 -> ワークフロー
3. りんごパイ(想定外のケーキ)も作りたい(焼く,素材作る,デコるが順不同) -> エージェント
結論 エージェントを使うのはどうしても必要な時だけにしよう
ありがとうございました