Lock in $30 Savings on PRO—Offer Ends Soon! ⏳
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Traffic light detection for self driving car
Search
shibuiwilliam
March 15, 2022
Technology
0
98
Traffic light detection for self driving car
machine learning system for traffic light detection
shibuiwilliam
March 15, 2022
Tweet
Share
More Decks by shibuiwilliam
See All by shibuiwilliam
AIエージェント開発と活用を加速するワークフロー自動生成への挑戦
shibuiwilliam
5
870
プロンプトやエージェントを自動的に作る方法
shibuiwilliam
16
16k
生成AIシステムとAIエージェントに関する性能や安全性の評価
shibuiwilliam
2
470
AIエージェントによるエンタープライズ向けスライド検索!
shibuiwilliam
4
1.2k
実践マルチモーダル検索!
shibuiwilliam
3
900
生成AI時代のデータ基盤
shibuiwilliam
7
5.1k
LLM時代の検索とコンテキストエンジニアリング
shibuiwilliam
3
1.9k
AI人生苦節10年で会得したAIがやること_人間がやること.pdf
shibuiwilliam
1
460
LayerXのApplied R&D
shibuiwilliam
2
110
Other Decks in Technology
See All in Technology
アラフォーおじさん、はじめてre:Inventに行く / A 40-Something Guy’s First re:Invent Adventure
kaminashi
0
160
Entity Framework Core におけるIN句クエリ最適化について
htkym
0
130
「もしもデータ基盤開発で『強くてニューゲーム』ができたなら今の僕はどんなデータ基盤を作っただろう」
aeonpeople
0
250
Oracle Database@Google Cloud:サービス概要のご紹介
oracle4engineer
PRO
1
770
2025-12-27 Claude CodeでPRレビュー対応を効率化する@機械学習社会実装勉強会第54回
nakamasato
4
1.1k
New Relic 1 年生の振り返りと Cloud Cost Intelligence について #NRUG
play_inc
0
240
AI駆動開発の実践とその未来
eltociear
2
500
Building Serverless AI Memory with Mastra × AWS
vvatanabe
0
600
『君の名は』と聞く君の名は。 / Your name, you who asks for mine.
nttcom
1
120
特別捜査官等研修会
nomizone
0
580
事業の財務責任に向き合うリクルートデータプラットフォームのFinOps
recruitengineers
PRO
2
230
2025-12-18_AI駆動開発推進プロジェクト運営について / AIDD-Promotion project management
yayoi_dd
0
160
Featured
See All Featured
B2B Lead Gen: Tactics, Traps & Triumph
marketingsoph
0
33
Large-scale JavaScript Application Architecture
addyosmani
515
110k
Utilizing Notion as your number one productivity tool
mfonobong
2
190
16th Malabo Montpellier Forum Presentation
akademiya2063
PRO
0
31
Effective software design: The role of men in debugging patriarchy in IT @ Voxxed Days AMS
baasie
0
170
From π to Pie charts
rasagy
0
92
The Pragmatic Product Professional
lauravandoore
37
7.1k
Deep Space Network (abreviated)
tonyrice
0
22
Leveraging Curiosity to Care for An Aging Population
cassininazir
1
130
Cheating the UX When There Is Nothing More to Optimize - PixelPioneers
stephaniewalter
286
14k
How to make the Groovebox
asonas
2
1.8k
Google's AI Overviews - The New Search
badams
0
870
Transcript
機械学習と一緒に 信号機を探す旅 2021/03/03 shibui yusuke 1
自己紹介 shibui yusuke • いろいろ → メルカリ → TierIV(いまここ) •
MLOps改めデータ検索基盤エンジニア • もともとクラウド基盤の開発、運用。 • ここ5年くらいMLOpsで仕事。 • Github: @shibuiwilliam • Qiita: @cvusk • FB: yusuke.shibui • 最近の趣味:自宅警備と環境改善 cat : 0.55 dog: 0.45 human : 0.70 gorilla : 0.30 物体検知 2
過ぎたるは及ばざるが如し • 課題: Work-from-homeでリアルタイムな コミュニケーションの機会損失 • 解決策: 端末とディスプレイを増やして コミュニケーション機会の損失防止 •
結果: ◦ bluetoothがどの端末に接続しているか わからなくなった ◦ ネコがデスクに乗ると・・・ 3
今日お伝えしたいこと • 最近の自動運転 • 一般道で自動運転車が走るための機械学習のモデルとシステムとデータ • 今日話さないこと:機械学習の論文やアルゴリズムや実装 4
自動運転の現在 5
6 2020年12月 新宿を走る
自動運転のシステム(一部) Dynamic Object Traffic Light Detection Classifier Scenario Selector Control
Localization Sensing Map Data Vehicle Interface Sensors Lane Driving Parking Etc. Scenario Planning Perception Detection Tracking Prediction Mission 7
自動運転のシステム(一部) Dynamic Object Traffic Light Detection Classifier Scenario Selector Control
Localization Sensing Map Data Vehicle Interface Sensors Lane Driving Parking Etc. Scenario Planning Perception Detection Tracking Prediction Mission 8
9 Ops Dev 自動車にクラウドの開発手法を導入する
モデル 10
20m手前から信号機の位置と色を把握したい 99%正確に推論できるモデルがあるとして、 一般道で信号機を認識するにはどう使う? 11
自動運転における機械学習 • リアルタイム・並列・多段階の認識プロセスが稼働 信号機を検知し、色を判別 歩行者を検知し、 移動方向や行動を判別 道路の範囲を セグメンテーション 20m 12
信号認識 • 地図、物体検知、画像認識、色認識の組み合わせ 信号機を検知し、色を判別 20m 物体検知 画像認識 色認識 前処理 地図
→赤! 13
システム 14
システムとして考える機械学習 推論器 インターフェイ ス 前処理 推論 後処理 ↓最低限必要 赤! 15
ソフトウェアとモデルのテスト • ソフトウェア開発ではプログラムを通してロジックをテストする • 機械学習ではコードを通してデータで確率をテストする 入力 正解 出力 assert 指標
推論 evaluate YES or NO 0 ~ 1 ソフトウェア開発のテスト 機械学習のテスト モデル 関数 関数 テスト通過率:95/100 Accuracy:99% Precision:95% Recall:60% 16
ソフトウェアとモデルのテスト • ソフトウェア開発ではプログラムを通してロジックをテストする • 機械学習ではコードを通してデータで確率をテストする 入力 正解 出力 assert 指標
推論 evaluate YES or NO 0 ~ 1 ソフトウェア開発のテスト 機械学習のテスト モデル 関数 関数 機械学習を実行する コードのユニットテスト 17
結合テスト • CIとしてコードとモデルを推論環境にインストールしてテストする モデル 管理 レポジトリ 実行環境 • CI環境を起動 •
自動運転OSをPull • レポジトリからコードを checkout • モデルをダウンロード • プログラムのテスト • モデルの稼働テスト • 推論テスト • CI終了 model development software development • (モデルのビルド) モデルが取得・導入可能 であることを確認 ソースコードのテスト コードからモデルを ロードできることを検証 コードから推論を検証 +負荷テスト +プロファイル +脆弱性診断 +外れ値検知・・・ 評価結果 18
推論環境 システムとして考える機械学習 インターフェイ ス ログ 学習 モデル管理 レポジトリ 評価結果 推論器
前処理 推論 後処理 評価 → 機械学習で DevOpsを 回すために必要 ↓自動運転 19 CI 検索
データ 20
データ • 巨大な非構造化データの収集と管理 一日の記録 • ログ(圧縮):100GB • 解凍し画像に変換:1,000GB • 画像枚数:1,000,000枚
この中から必要なデータを探す! 21
データ 22 正解率 距離 遠くても 正解する 近くても 間違える • 全てのデータをアノテーション
することは非現実的 • 間違える可能性の高い データを優先したいが、 データをどう探す?
天気との戦い うおっまぶしっ 23
地図の応用 24 • 地図、物体検知、画像認識、色認識の組み合わせ 信号機を検知し、色を判別 20m 物体検知 画像認識 色認識 前処理
地図 →赤! 24 ここに 信号機が あるはず
変化との戦い 消えた信号 25
データ検索基盤(開発中!) インターフェイ ス ログ 推論器 前処理 推論 後処理 26 フロント
エンド バッチ DB 物体検知 バック エンド 機械学習
おわり 27
まとめ 28 • 信号機を認識するためにはデバイスサイドとクラウドサイドと実世界の エンジニアリングが必要 • 天気、照度、カメラ、場所、時間・・・を組み合わせたエッジケースの探索 →デバイスサイドで得たビッグデータをクラウドサイドで便利にする
We are hiring! 29 • Sensing & Perceptionエンジニア ◦ カメラ、LiDAR、RADARを用いたリアル
タイムなセンシング、認識の開発を行う 仕事です。 ◦ センシングや認識の開発だけでなく、 キャリブレーションやデータセット 作りなど、自動運転の社会実装において 必要な機能開発に幅広く関われます。 • https://herp.careers/v1/tier4/czP-r7Y5GaJV • MLOpsエンジニア ◦ 毎日テラバイト単位で増える非構造化 データを、便利に使えるようにする 仕事です。 ◦ クラウド、機械学習、バックエンド、 フロントエンド、デバイスまで、 フルスタックにエンジニアリングが 楽しめます。 • https://herp.careers/v1/tier4/zHA-dVY6ORa4
© 2020 Tier IV, Inc. 30 2021