Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
PyData.Fukuoka#6_LT_slide
Search
shinpsan
November 22, 2019
Programming
0
480
PyData.Fukuoka#6_LT_slide
前処理するとき便利だからよく
pandas.DataFrame.apply(lambda)
使っちゃうけど遅いから本当は
pandas.Series.map()
使った方がいいと思う
shinpsan
November 22, 2019
Tweet
Share
More Decks by shinpsan
See All by shinpsan
CDLE_Fukuoka_20230523
shinpsan
0
170
LT_コンサル完全に理解したらミドルDSになった_ちゅらNOB合同勉強会
shinpsan
0
400
LT_統計学ユーザーでいいんです_みんなのPython勉強会#70
shinpsan
1
670
"Momochihama Store" on TNC has a wonderful "Udon MAP" section.
shinpsan
0
240
Other Decks in Programming
See All in Programming
登壇は dynamic! な営みである / speech is dynamic
da1chi
0
340
Cursorハンズオン実践!
eltociear
2
1.1k
なぜあの開発者はDevRelに伴走し続けるのか / Why Does That Developer Keep Running Alongside DevRel?
nrslib
3
410
Introducing ReActionView: A new ActionView-Compatible ERB Engine @ Kaigi on Rails 2025, Tokyo, Japan
marcoroth
3
1k
CSC305 Lecture 05
javiergs
PRO
0
210
Web フロントエンドエンジニアに開かれる AI Agent プロダクト開発 - Vercel AI SDK を観察して AI Agent と仲良くなろう! #FEC余熱NIGHT
izumin5210
3
530
Go言語はstack overflowの夢を見るか?
logica0419
0
340
Go言語の特性を活かした公式MCP SDKの設計
hond0413
1
230
組込みだけじゃない!TinyGo で始める無料クラウド開発入門
otakakot
0
280
デミカツ切り抜きで面倒くさいことはPythonにやらせよう
aokswork3
0
240
私達はmodernize packageに夢を見るか feat. go/analysis, go/ast / Go Conference 2025
kaorumuta
2
570
Flutterで分数(Fraction)を表示する方法
koukimiura
0
130
Featured
See All Featured
Build The Right Thing And Hit Your Dates
maggiecrowley
37
2.9k
Measuring & Analyzing Core Web Vitals
bluesmoon
9
620
How to Ace a Technical Interview
jacobian
280
24k
Design and Strategy: How to Deal with People Who Don’t "Get" Design
morganepeng
132
19k
VelocityConf: Rendering Performance Case Studies
addyosmani
332
24k
Git: the NoSQL Database
bkeepers
PRO
431
66k
[RailsConf 2023 Opening Keynote] The Magic of Rails
eileencodes
31
9.7k
The Invisible Side of Design
smashingmag
302
51k
Learning to Love Humans: Emotional Interface Design
aarron
274
41k
Bash Introduction
62gerente
615
210k
Building a Scalable Design System with Sketch
lauravandoore
463
33k
Making Projects Easy
brettharned
120
6.4k
Transcript
前処理するとき便利だからよく pandas.DataFrame.apply(lambda) 使っちゃうけど遅いから本当は pandas.Series.map() 使った方がいいと思う PyData.Fukuoka #6 LT @shinpsan
自己紹介 下積みの父@shinpsan 小売業のデータサイエンティスト(12月まで。年明け転職します) MENSA会員 合同会社ocojoで副業 twitter : 仕事
: 特技: 趣味:
話すこと タイトルに書いたことが全てです。 pandasの基本的なところなのでみんな知ってる内容かも。 知ってる方はヒマだと思うので、心の中で 「シカ」って10回言った後、 「サンタクロースが乗っているのは?」に答えてて下さい
背景 クソみたいなデータ渡されたと文句言いながら、 いつもクソみたいなコード書いてることを反省。
再現データ ラベル 営業時間 値1 値2 値3 • 1ファイルにつき何個か値が格納された ファイルが大量にある •
それを集めてきて1つのテーブルにした もの • ラベルが元のファイル名
やりたいこと(持っていきたい方向) 店舗の営業時間体系ごとの • 三角おにぎり • パックおにぎり • 寿司 のラベルをつけて集計とか 可視化とかいろいろ
再現データ ラベル 営業時間 値1 値2 値3 • おにぎり、寿司、パックおにぎり 判別はラベルの文字列から可能
• 営業時間は9~21時 or 24時間営業
クソみたいなところ① ラベル 営業時間 値1 値2 値3 ラベルの文字列の長さがバラバラ
クソみたいなところ② ラベル 営業時間 値1 値2 値3 おにぎり、寿司の判別は文字列の先頭 パックおにぎりの判別は文字列の最後
クソみたいなところ③ ラベル 営業時間 値1 値2 値3 ラベルに区切り文字とか入って無い
手順1 ラベル 営業時間 値1 値2 値3 ラベル列の各行に関して、 先頭7文字が”ONIGIRI” かどうか、 先頭5文字が”SUSHI”
かどうか、 最後4文字が”pack” かどうか 判別
手順2 ラベル 営業時間 値1 値2 値3 営業時間列の各行に関して、 “9-21” or “24h”
判別
手順3 ラベル 営業時間 値1 値2 値3 手順1,2の判別を元に 新たなラベル列作成 新ラベル おにぎり_9-21
おにぎり_24h ・ ・ ・
ここで本題 どんな処理書く? • for + iterrows() • df.apply() • Series.map()
①for i, row in {pd.DataFrame}.iterrow(): ラベル 営業時間 値1 値2 値3
データフレームの1行1行に対して ループ処理 処理 ↓ 処理 ↓ 処理 ↓ 処理 ↓ 処理 ↓
①for i, row in {pd.DataFrame}.iterrow():
②{pd.DataFrame}.apply(lambda x: {}) ラベル 営業時間 値1 値2 値3 データフレームの各行に対して 同じ処理を一括適応
lambda x のxには各行が1行のDFにみたいにして渡される x[“ラベル”]みたいにして使うとこ選べる ✖ 処理 ✖ 処理 ✖ 処理 ✖ 処理 ✖ 処理
②{pd.DataFrame}.apply(lambda x: {})
③{pd.Series}.map(lambda x: {}) ラベル ✖ 処理 ✖ 処理 ✖ 処理
✖ 処理 ✖ 処理 Seriesの各要素に対して 同じ処理を一括適応
③{pd.Series}.map(lambda x: {})
None
実行速度比較 1万行まで iterrowsだと1万行のデータで 1~2秒かかる データの行数 処理にかかった時間
実行速度比較 10万行まで df.apply()だと10万行のデータで ~2秒かかる
実行速度比較 1000万行まで Series.map()だと1000万行のデータで 約5秒かかる
まとめ ただの肌感ですが、jupyterで分析してて、 そこまで気にならない待ち時間は2秒くらい • for + iterrows 1万行 • df.apply
10万行 • Series.map 400万行 まぁ、結論としてループは使わない。 df.apply()は何も考えずに記述できるけど遅いから、 Series.map()でやる方がいいですね。
enjoy! 答え:そり(トナカイには乗っていない)