Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
PyData.Fukuoka#6_LT_slide
Search
shinpsan
November 22, 2019
Programming
0
480
PyData.Fukuoka#6_LT_slide
前処理するとき便利だからよく
pandas.DataFrame.apply(lambda)
使っちゃうけど遅いから本当は
pandas.Series.map()
使った方がいいと思う
shinpsan
November 22, 2019
Tweet
Share
More Decks by shinpsan
See All by shinpsan
CDLE_Fukuoka_20230523
shinpsan
0
180
LT_コンサル完全に理解したらミドルDSになった_ちゅらNOB合同勉強会
shinpsan
0
400
LT_統計学ユーザーでいいんです_みんなのPython勉強会#70
shinpsan
1
670
"Momochihama Store" on TNC has a wonderful "Udon MAP" section.
shinpsan
0
240
Other Decks in Programming
See All in Programming
Introduce Hono CLI
yusukebe
6
3.3k
CSC305 Lecture 11
javiergs
PRO
0
320
エンジニアに事業やプロダクトを理解してもらうためにやってること
murabayashi
0
120
Making Angular Apps Smarter with Generative AI: Local and Offline-capable
christianliebel
PRO
0
100
SODA - FACT BOOK(JP)
sodainc
1
9.2k
Module Proxyのマニアックな話 / Niche Topics in Module Proxy
kuro_kurorrr
0
1.3k
業務でAIを使いたい話
hnw
0
230
One Enishi After Another
snoozer05
PRO
0
180
TransformerからMCPまで(現代AIを理解するための羅針盤)
mickey_kubo
7
6k
alien-signals と自作 OSS で実現する フレームワーク非依存な ロジック共通化の探求 / Exploring Framework-Agnostic Logic Sharing with alien-signals and Custom OSS
aoseyuu
3
5.5k
Dive into Triton Internals
appleparan
0
420
Reactive Thinking with Signals and the Resource API
manfredsteyer
PRO
0
120
Featured
See All Featured
How STYLIGHT went responsive
nonsquared
100
5.9k
The Straight Up "How To Draw Better" Workshop
denniskardys
239
140k
Why Our Code Smells
bkeepers
PRO
340
57k
個人開発の失敗を避けるイケてる考え方 / tips for indie hackers
panda_program
116
20k
Intergalactic Javascript Robots from Outer Space
tanoku
273
27k
Fireside Chat
paigeccino
41
3.7k
The Pragmatic Product Professional
lauravandoore
36
7k
The MySQL Ecosystem @ GitHub 2015
samlambert
251
13k
Visualization
eitanlees
150
16k
[RailsConf 2023 Opening Keynote] The Magic of Rails
eileencodes
31
9.7k
Leading Effective Engineering Teams in the AI Era
addyosmani
8
720
The Web Performance Landscape in 2024 [PerfNow 2024]
tammyeverts
10
910
Transcript
前処理するとき便利だからよく pandas.DataFrame.apply(lambda) 使っちゃうけど遅いから本当は pandas.Series.map() 使った方がいいと思う PyData.Fukuoka #6 LT @shinpsan
自己紹介 下積みの父@shinpsan 小売業のデータサイエンティスト(12月まで。年明け転職します) MENSA会員 合同会社ocojoで副業 twitter : 仕事
: 特技: 趣味:
話すこと タイトルに書いたことが全てです。 pandasの基本的なところなのでみんな知ってる内容かも。 知ってる方はヒマだと思うので、心の中で 「シカ」って10回言った後、 「サンタクロースが乗っているのは?」に答えてて下さい
背景 クソみたいなデータ渡されたと文句言いながら、 いつもクソみたいなコード書いてることを反省。
再現データ ラベル 営業時間 値1 値2 値3 • 1ファイルにつき何個か値が格納された ファイルが大量にある •
それを集めてきて1つのテーブルにした もの • ラベルが元のファイル名
やりたいこと(持っていきたい方向) 店舗の営業時間体系ごとの • 三角おにぎり • パックおにぎり • 寿司 のラベルをつけて集計とか 可視化とかいろいろ
再現データ ラベル 営業時間 値1 値2 値3 • おにぎり、寿司、パックおにぎり 判別はラベルの文字列から可能
• 営業時間は9~21時 or 24時間営業
クソみたいなところ① ラベル 営業時間 値1 値2 値3 ラベルの文字列の長さがバラバラ
クソみたいなところ② ラベル 営業時間 値1 値2 値3 おにぎり、寿司の判別は文字列の先頭 パックおにぎりの判別は文字列の最後
クソみたいなところ③ ラベル 営業時間 値1 値2 値3 ラベルに区切り文字とか入って無い
手順1 ラベル 営業時間 値1 値2 値3 ラベル列の各行に関して、 先頭7文字が”ONIGIRI” かどうか、 先頭5文字が”SUSHI”
かどうか、 最後4文字が”pack” かどうか 判別
手順2 ラベル 営業時間 値1 値2 値3 営業時間列の各行に関して、 “9-21” or “24h”
判別
手順3 ラベル 営業時間 値1 値2 値3 手順1,2の判別を元に 新たなラベル列作成 新ラベル おにぎり_9-21
おにぎり_24h ・ ・ ・
ここで本題 どんな処理書く? • for + iterrows() • df.apply() • Series.map()
①for i, row in {pd.DataFrame}.iterrow(): ラベル 営業時間 値1 値2 値3
データフレームの1行1行に対して ループ処理 処理 ↓ 処理 ↓ 処理 ↓ 処理 ↓ 処理 ↓
①for i, row in {pd.DataFrame}.iterrow():
②{pd.DataFrame}.apply(lambda x: {}) ラベル 営業時間 値1 値2 値3 データフレームの各行に対して 同じ処理を一括適応
lambda x のxには各行が1行のDFにみたいにして渡される x[“ラベル”]みたいにして使うとこ選べる ✖ 処理 ✖ 処理 ✖ 処理 ✖ 処理 ✖ 処理
②{pd.DataFrame}.apply(lambda x: {})
③{pd.Series}.map(lambda x: {}) ラベル ✖ 処理 ✖ 処理 ✖ 処理
✖ 処理 ✖ 処理 Seriesの各要素に対して 同じ処理を一括適応
③{pd.Series}.map(lambda x: {})
None
実行速度比較 1万行まで iterrowsだと1万行のデータで 1~2秒かかる データの行数 処理にかかった時間
実行速度比較 10万行まで df.apply()だと10万行のデータで ~2秒かかる
実行速度比較 1000万行まで Series.map()だと1000万行のデータで 約5秒かかる
まとめ ただの肌感ですが、jupyterで分析してて、 そこまで気にならない待ち時間は2秒くらい • for + iterrows 1万行 • df.apply
10万行 • Series.map 400万行 まぁ、結論としてループは使わない。 df.apply()は何も考えずに記述できるけど遅いから、 Series.map()でやる方がいいですね。
enjoy! 答え:そり(トナカイには乗っていない)