Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
PyData.Fukuoka#6_LT_slide
Search
shinpsan
November 22, 2019
Programming
0
460
PyData.Fukuoka#6_LT_slide
前処理するとき便利だからよく
pandas.DataFrame.apply(lambda)
使っちゃうけど遅いから本当は
pandas.Series.map()
使った方がいいと思う
shinpsan
November 22, 2019
Tweet
Share
More Decks by shinpsan
See All by shinpsan
CDLE_Fukuoka_20230523
shinpsan
0
150
LT_コンサル完全に理解したらミドルDSになった_ちゅらNOB合同勉強会
shinpsan
0
370
LT_統計学ユーザーでいいんです_みんなのPython勉強会#70
shinpsan
1
640
"Momochihama Store" on TNC has a wonderful "Udon MAP" section.
shinpsan
0
210
Other Decks in Programming
See All in Programming
PHPカンファレンス 2024|共創を加速するための若手の技術挑戦
weddingpark
0
110
月刊 競技プログラミングをお仕事に役立てるには
terryu16
1
1.1k
HTML/CSS超絶浅い説明
yuki0329
0
160
今年のアップデートで振り返るCDKセキュリティのシフトレフト/2024-cdk-security-shift-left
tomoki10
0
330
良いユニットテストを書こう
mototakatsu
11
3.5k
ドメインイベント増えすぎ問題
h0r15h0
2
540
Zoneless Testing
rainerhahnekamp
0
150
KubeCon NA 2024の全DB関連セッションを紹介
nnaka2992
0
110
コンテナをたくさん詰め込んだシステムとランタイムの変化
makihiro
1
180
PHPUnitしか使ってこなかった 一般PHPerがPestに乗り換えた実録
mashirou1234
0
390
GitHubで育つ コラボレーション文化 : ニフティでのインナーソース挑戦事例 - 2024-12-16 GitHub Universe 2024 Recap in ZOZO
niftycorp
PRO
0
1.1k
EC2からECSへ 念願のコンテナ移行と巨大レガシーPHPアプリケーションの再構築
sumiyae
3
540
Featured
See All Featured
Rebuilding a faster, lazier Slack
samanthasiow
79
8.8k
Design and Strategy: How to Deal with People Who Don’t "Get" Design
morganepeng
127
18k
GitHub's CSS Performance
jonrohan
1030
460k
The Illustrated Children's Guide to Kubernetes
chrisshort
48
49k
Put a Button on it: Removing Barriers to Going Fast.
kastner
59
3.6k
XXLCSS - How to scale CSS and keep your sanity
sugarenia
248
1.3M
Fight the Zombie Pattern Library - RWD Summit 2016
marcelosomers
232
17k
Chrome DevTools: State of the Union 2024 - Debugging React & Beyond
addyosmani
3
230
Performance Is Good for Brains [We Love Speed 2024]
tammyeverts
7
550
How To Stay Up To Date on Web Technology
chriscoyier
790
250k
Speed Design
sergeychernyshev
25
720
Sharpening the Axe: The Primacy of Toolmaking
bcantrill
38
1.9k
Transcript
前処理するとき便利だからよく pandas.DataFrame.apply(lambda) 使っちゃうけど遅いから本当は pandas.Series.map() 使った方がいいと思う PyData.Fukuoka #6 LT @shinpsan
自己紹介 下積みの父@shinpsan 小売業のデータサイエンティスト(12月まで。年明け転職します) MENSA会員 合同会社ocojoで副業 twitter : 仕事
: 特技: 趣味:
話すこと タイトルに書いたことが全てです。 pandasの基本的なところなのでみんな知ってる内容かも。 知ってる方はヒマだと思うので、心の中で 「シカ」って10回言った後、 「サンタクロースが乗っているのは?」に答えてて下さい
背景 クソみたいなデータ渡されたと文句言いながら、 いつもクソみたいなコード書いてることを反省。
再現データ ラベル 営業時間 値1 値2 値3 • 1ファイルにつき何個か値が格納された ファイルが大量にある •
それを集めてきて1つのテーブルにした もの • ラベルが元のファイル名
やりたいこと(持っていきたい方向) 店舗の営業時間体系ごとの • 三角おにぎり • パックおにぎり • 寿司 のラベルをつけて集計とか 可視化とかいろいろ
再現データ ラベル 営業時間 値1 値2 値3 • おにぎり、寿司、パックおにぎり 判別はラベルの文字列から可能
• 営業時間は9~21時 or 24時間営業
クソみたいなところ① ラベル 営業時間 値1 値2 値3 ラベルの文字列の長さがバラバラ
クソみたいなところ② ラベル 営業時間 値1 値2 値3 おにぎり、寿司の判別は文字列の先頭 パックおにぎりの判別は文字列の最後
クソみたいなところ③ ラベル 営業時間 値1 値2 値3 ラベルに区切り文字とか入って無い
手順1 ラベル 営業時間 値1 値2 値3 ラベル列の各行に関して、 先頭7文字が”ONIGIRI” かどうか、 先頭5文字が”SUSHI”
かどうか、 最後4文字が”pack” かどうか 判別
手順2 ラベル 営業時間 値1 値2 値3 営業時間列の各行に関して、 “9-21” or “24h”
判別
手順3 ラベル 営業時間 値1 値2 値3 手順1,2の判別を元に 新たなラベル列作成 新ラベル おにぎり_9-21
おにぎり_24h ・ ・ ・
ここで本題 どんな処理書く? • for + iterrows() • df.apply() • Series.map()
①for i, row in {pd.DataFrame}.iterrow(): ラベル 営業時間 値1 値2 値3
データフレームの1行1行に対して ループ処理 処理 ↓ 処理 ↓ 処理 ↓ 処理 ↓ 処理 ↓
①for i, row in {pd.DataFrame}.iterrow():
②{pd.DataFrame}.apply(lambda x: {}) ラベル 営業時間 値1 値2 値3 データフレームの各行に対して 同じ処理を一括適応
lambda x のxには各行が1行のDFにみたいにして渡される x[“ラベル”]みたいにして使うとこ選べる ✖ 処理 ✖ 処理 ✖ 処理 ✖ 処理 ✖ 処理
②{pd.DataFrame}.apply(lambda x: {})
③{pd.Series}.map(lambda x: {}) ラベル ✖ 処理 ✖ 処理 ✖ 処理
✖ 処理 ✖ 処理 Seriesの各要素に対して 同じ処理を一括適応
③{pd.Series}.map(lambda x: {})
None
実行速度比較 1万行まで iterrowsだと1万行のデータで 1~2秒かかる データの行数 処理にかかった時間
実行速度比較 10万行まで df.apply()だと10万行のデータで ~2秒かかる
実行速度比較 1000万行まで Series.map()だと1000万行のデータで 約5秒かかる
まとめ ただの肌感ですが、jupyterで分析してて、 そこまで気にならない待ち時間は2秒くらい • for + iterrows 1万行 • df.apply
10万行 • Series.map 400万行 まぁ、結論としてループは使わない。 df.apply()は何も考えずに記述できるけど遅いから、 Series.map()でやる方がいいですね。
enjoy! 答え:そり(トナカイには乗っていない)