Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Creating a New Stream Data Pipeline on Google C...
Search
Shu Suzuki
July 19, 2019
Programming
1
3.7k
Creating a New Stream Data Pipeline on Google Cloud Platform 20190719
大量のログデータを、より効率的に、より柔軟に扱うためのパイプラインをGCP使って作った話
Shu Suzuki
July 19, 2019
Tweet
Share
More Decks by Shu Suzuki
See All by Shu Suzuki
Creating Stream DataPipeline on GCP Using Apache Beam
shoe116
3
2.6k
Business Intelligence Engineer in Mercari
shoe116
0
88
Other Decks in Programming
See All in Programming
Amazon Neptuneで始めてみるグラフDB-OpenSearchによるグラフの全文検索-
satoshi256kbyte
4
320
GCCのプラグインを作る / I Made a GCC Plugin
shouth
1
150
macOS でできる リアルタイム動画像処理
biacco42
7
1.8k
Streams APIとTCPフロー制御 / Web Streams API and TCP flow control
tasshi
1
290
go.mod、DockerfileやCI設定に分散しがちなGoのバージョンをまとめて管理する / Go Connect #3
arthur1
10
2.4k
シールドクラスをはじめよう / Getting Started with Sealed Classes
mackey0225
3
400
『ドメイン駆動設計をはじめよう』のモデリングアプローチ
masuda220
PRO
8
440
JaSST 24 九州:ワークショップ(は除く)実践!マインドマップを活用したソフトウェアテスト+活用事例
satohiroyuki
0
260
Kaigi on Rails 2024 - Rails APIモードのためのシンプルで効果的なCSRF対策 / kaigionrails-2024-csrf
corocn
5
3.4k
PagerDuty を軸にした On-Call 構築と運用課題の解決 / PagerDuty Japan Community Meetup 4
horimislime
1
110
Content Security Policy入門 セキュリティ設定と 違反レポートのはじめ方 / Introduction to Content Security Policy Getting Started with Security Configuration and Violation Reporting
uskey512
1
430
PLoP 2024: The evolution of the microservice architecture pattern language
cer
PRO
0
1.6k
Featured
See All Featured
Building a Modern Day E-commerce SEO Strategy
aleyda
38
6.9k
The Illustrated Children's Guide to Kubernetes
chrisshort
48
48k
実際に使うSQLの書き方 徹底解説 / pgcon21j-tutorial
soudai
167
49k
The Invisible Side of Design
smashingmag
297
50k
Large-scale JavaScript Application Architecture
addyosmani
510
110k
Imperfection Machines: The Place of Print at Facebook
scottboms
264
13k
Building a Scalable Design System with Sketch
lauravandoore
459
33k
"I'm Feeling Lucky" - Building Great Search Experiences for Today's Users (#IAC19)
danielanewman
226
22k
Documentation Writing (for coders)
carmenintech
65
4.4k
Code Reviewing Like a Champion
maltzj
519
39k
RailsConf & Balkan Ruby 2019: The Past, Present, and Future of Rails at GitHub
eileencodes
131
33k
The Art of Programming - Codeland 2020
erikaheidi
51
13k
Transcript
1 GCPでStreamなデータパイプライン作った {“id”: “@shoe116”, “team”: “Data Platform”}
2 mercariのlog収集の歴史とマイクロサービス化 GCPでStreamなデータパイプライン作った GCPで作ったStreamなデータパイプラインの概要 AvroとDataFlowを使ったETL処理 今日のまとめ 02 03 04 01
3 - Mercari Data Platform - Stream/Batch Pipeline Developer -
Scala, Python, Java, Go, etc - Apache Beam, Kafka, Storm, Hive, Hadoop… Shu Suzuki @shoe116
4 指定された区間(data sources - data sinks)で データパイプライン? 信頼性のあるデータ処理やデータ転送を 安定的に提供する仕組み 2.
3. 1. 今回は「本番環境のlogを、DWH等の分析環境に届ける」ことを 主眼にしたデータパイプラインについて話します。
5 Mercariのlog収集の歴史と マイクロサービス化
6 既存のlog収集の仕組み モノリスのWebアプリケーションのlogをfluentdで伝搬しbatch処理
7 マイクロサービスのアーキテクチャ データパイプライン的に言うと、data-sourceが不特定多数になる ??
8 GCPで作った Streamなデータパイプラインの概要
9 メッセージ志向ミドルウェア(G製Kafka) 使っているGCPのサービス Beamで記述できる処理エンジン(G製Flink) Cloud Dataflow Cloud Pub/Sub Cloud Storage
マルチリージョナルなオブジェクトストレージ BigQuery 大量データ向けのG製DWH、GCSからも読める。
10 新しい Stream データパイプライン 各MSのRamp TopicからDataHubへ集約、GCSとBigQueryへStore
11 各MSごとに設けられたデータの投入口 各Cloud Pub/SubのTopicの役割 Rampsのデータを1つのTopicに集約したTopic Raw DataHub Ramps 構造化されたSchema付きAvroが流れるTopic Structured
DataHub
12 Raw DataHubのデータを出力するGCS bucket 各データストアの役割 Structurd Datahubのデータを出力するGCS bucket Structured DataLake
Raw DataLake Structured DataHubのデータを出力するBig Query DWH
13 AvroとDataflowを使ったETL処理
14 DataHub Avro format {"type": "record", "name": "DataHubAvro", "namespace": "com.mercari.data.model.v3",
"fields": [{ {"name": "uuid", "type": "string"}, {"name": "timestamp", "type": { "type": "long", "logicalType": "timestamp-micros" }}, {"name": "topic_name", "type": "string"}, {"name": "service_name", "type": "string"}, {"name": "log_name", "type": "string"}, {"name": "content_type", "type": ["null", "string"], "default": null}, {"name": "user_agent", "type": ["null", "string"], "default": null}, {"name": "payload","type": "bytes"} ]} } パイプラインの共通フォーマット Avroを採用した理由 - AvroはそのままGCSに書ける - AvroはそのままBQに書ける - Avro fileはBQから直接読める DataHub Avro に含まれるもの - パイプラインのdestination - Schemaの引き当て情報 - データ本体
15 Map処理でRampsからデータを読む Ramps -> Raw DataHubのETL 共通のDataHub Avro formatに変換 全レコードをRaw
DataHubにwrite T L E
16 Raw DataHubからデータを読む Raw DataHub -> Structured DataHub のETL DataHub
Avroのpayloadのbyte[]を、 構造化されたAvroに変換する T L E 全レコードをStructured DataHubにwrite
17 サービスのMS化に伴いパイプラインも進化が求められる 今日のまとめ 不特定多数のdata sourceを想定して設計、開発中 Google Cloud Pratformの各サービスとAvroを利用 We are
hiring! 02 03 04 01 https://mercari.workable.com/jobs/765272