$30 off During Our Annual Pro Sale. View Details »
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Creating a New Stream Data Pipeline on Google C...
Search
Shu Suzuki
July 19, 2019
Programming
1
3.8k
Creating a New Stream Data Pipeline on Google Cloud Platform 20190719
大量のログデータを、より効率的に、より柔軟に扱うためのパイプラインをGCP使って作った話
Shu Suzuki
July 19, 2019
Tweet
Share
More Decks by Shu Suzuki
See All by Shu Suzuki
バフェットコード株式会社 開発チームカルチャーデック
shoe116
1
250
Data & Analytics 井戸端会議 #02
shoe116
0
420
Data & Analytics 井戸端会議 #01
shoe116
1
42
財務データを題材に、 ETLとは何であるかを考える
shoe116
9
3.3k
Ruby on Railsで作る銘柄スクリーニング
shoe116
0
800
Creating Stream DataPipeline on GCP Using Apache Beam
shoe116
3
2.9k
Business Intelligence Engineer in Mercari
shoe116
0
150
Other Decks in Programming
See All in Programming
組み合わせ爆発にのまれない - 責務分割 x テスト
halhorn
1
160
公共交通オープンデータ × モバイルUX 複雑な運行情報を 『直感』に変換する技術
tinykitten
PRO
0
160
【卒業研究】会話ログ分析によるユーザーごとの関心に応じた話題提案手法
momok47
0
130
令和最新版Android Studioで化石デバイス向けアプリを作る
arkw
0
450
認証・認可の基本を学ぼう後編
kouyuume
0
250
JETLS.jl ─ A New Language Server for Julia
abap34
2
460
TestingOsaka6_Ozono
o3
0
180
チームをチームにするEM
hitode909
0
400
Developing static sites with Ruby
okuramasafumi
0
330
Claude Codeの「Compacting Conversation」を体感50%減! CLAUDE.md + 8 Skills で挑むコンテキスト管理術
kmurahama
1
650
生成AI時代を勝ち抜くエンジニア組織マネジメント
coconala_engineer
0
25k
開発に寄りそう自動テストの実現
goyoki
2
1.4k
Featured
See All Featured
Being A Developer After 40
akosma
91
590k
Agile Leadership in an Agile Organization
kimpetersen
PRO
0
58
We Have a Design System, Now What?
morganepeng
54
7.9k
Git: the NoSQL Database
bkeepers
PRO
432
66k
SEO for Brand Visibility & Recognition
aleyda
0
4.1k
Claude Code どこまでも/ Claude Code Everywhere
nwiizo
61
50k
Mind Mapping
helmedeiros
PRO
0
39
Bridging the Design Gap: How Collaborative Modelling removes blockers to flow between stakeholders and teams @FastFlow conf
baasie
0
410
Into the Great Unknown - MozCon
thekraken
40
2.2k
[RailsConf 2023] Rails as a piece of cake
palkan
58
6.2k
Making Projects Easy
brettharned
120
6.5k
Let's Do A Bunch of Simple Stuff to Make Websites Faster
chriscoyier
508
140k
Transcript
1 GCPでStreamなデータパイプライン作った {“id”: “@shoe116”, “team”: “Data Platform”}
2 mercariのlog収集の歴史とマイクロサービス化 GCPでStreamなデータパイプライン作った GCPで作ったStreamなデータパイプラインの概要 AvroとDataFlowを使ったETL処理 今日のまとめ 02 03 04 01
3 - Mercari Data Platform - Stream/Batch Pipeline Developer -
Scala, Python, Java, Go, etc - Apache Beam, Kafka, Storm, Hive, Hadoop… Shu Suzuki @shoe116
4 指定された区間(data sources - data sinks)で データパイプライン? 信頼性のあるデータ処理やデータ転送を 安定的に提供する仕組み 2.
3. 1. 今回は「本番環境のlogを、DWH等の分析環境に届ける」ことを 主眼にしたデータパイプラインについて話します。
5 Mercariのlog収集の歴史と マイクロサービス化
6 既存のlog収集の仕組み モノリスのWebアプリケーションのlogをfluentdで伝搬しbatch処理
7 マイクロサービスのアーキテクチャ データパイプライン的に言うと、data-sourceが不特定多数になる ??
8 GCPで作った Streamなデータパイプラインの概要
9 メッセージ志向ミドルウェア(G製Kafka) 使っているGCPのサービス Beamで記述できる処理エンジン(G製Flink) Cloud Dataflow Cloud Pub/Sub Cloud Storage
マルチリージョナルなオブジェクトストレージ BigQuery 大量データ向けのG製DWH、GCSからも読める。
10 新しい Stream データパイプライン 各MSのRamp TopicからDataHubへ集約、GCSとBigQueryへStore
11 各MSごとに設けられたデータの投入口 各Cloud Pub/SubのTopicの役割 Rampsのデータを1つのTopicに集約したTopic Raw DataHub Ramps 構造化されたSchema付きAvroが流れるTopic Structured
DataHub
12 Raw DataHubのデータを出力するGCS bucket 各データストアの役割 Structurd Datahubのデータを出力するGCS bucket Structured DataLake
Raw DataLake Structured DataHubのデータを出力するBig Query DWH
13 AvroとDataflowを使ったETL処理
14 DataHub Avro format {"type": "record", "name": "DataHubAvro", "namespace": "com.mercari.data.model.v3",
"fields": [{ {"name": "uuid", "type": "string"}, {"name": "timestamp", "type": { "type": "long", "logicalType": "timestamp-micros" }}, {"name": "topic_name", "type": "string"}, {"name": "service_name", "type": "string"}, {"name": "log_name", "type": "string"}, {"name": "content_type", "type": ["null", "string"], "default": null}, {"name": "user_agent", "type": ["null", "string"], "default": null}, {"name": "payload","type": "bytes"} ]} } パイプラインの共通フォーマット Avroを採用した理由 - AvroはそのままGCSに書ける - AvroはそのままBQに書ける - Avro fileはBQから直接読める DataHub Avro に含まれるもの - パイプラインのdestination - Schemaの引き当て情報 - データ本体
15 Map処理でRampsからデータを読む Ramps -> Raw DataHubのETL 共通のDataHub Avro formatに変換 全レコードをRaw
DataHubにwrite T L E
16 Raw DataHubからデータを読む Raw DataHub -> Structured DataHub のETL DataHub
Avroのpayloadのbyte[]を、 構造化されたAvroに変換する T L E 全レコードをStructured DataHubにwrite
17 サービスのMS化に伴いパイプラインも進化が求められる 今日のまとめ 不特定多数のdata sourceを想定して設計、開発中 Google Cloud Pratformの各サービスとAvroを利用 We are
hiring! 02 03 04 01 https://mercari.workable.com/jobs/765272