Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
G-methods for time-varying treatments (Causal i...
Search
Shuntaro Sato
November 25, 2020
Science
0
3.4k
G-methods for time-varying treatments (Causal inference: What if, Chapter 21-1)
Keywords: 因果推論, Time-varying, G-formula, IP weighting, Doubly robust estimation
Shuntaro Sato
November 25, 2020
Tweet
Share
More Decks by Shuntaro Sato
See All by Shuntaro Sato
単施設でできる臨床研究の考え方
shuntaros
0
3.2k
TRIPOD+AI Expandedチェックリスト 有志翻訳による日本語版 version.1.1
shuntaros
0
270
仮説検定とP値
shuntaros
8
11k
Target trial emulationの概要
shuntaros
2
3.5k
Win ratio その2
shuntaros
0
540
Win ratioとは何か?
shuntaros
0
3k
ICH E9 (R1) 臨床試験のための統計的原則〜中間事象に対するストラテジー
shuntaros
1
1.2k
「回帰分析から分かること」と「変数選択」
shuntaros
17
20k
対照群がない研究デザインで効果を推定する(時系列分断デザイン・自己対照研究デザイン)
shuntaros
5
5.7k
Other Decks in Science
See All in Science
My Little Monster
juzishuu
0
220
NDCG is NOT All I Need
statditto
2
2.4k
データベース06: SQL (3/3) 副問い合わせ
trycycle
PRO
1
670
Collective Predictive Coding as a Unified Theory for the Socio-Cognitive Human Minds
tanichu
0
120
CV_3_Keypoints
hachama
0
220
AIに仕事を奪われる 最初の医師たちへ
ikora128
0
1k
People who frequently use ChatGPT for writing tasks are accurate and robust detectors of AI-generated text
rudorudo11
0
140
mOrganic™ Holdings, LLC.
hyperlocalnetwork
0
160
academist Prize 4期生 研究トーク延長戦!「美は世界を救う」っていうけど、どうやって?
jimpe_hitsuwari
0
440
機械学習 - pandas入門
trycycle
PRO
0
360
Lean4による汎化誤差評価の形式化
milano0017
1
370
DMMにおけるABテスト検証設計の工夫
xc6da
1
1.3k
Featured
See All Featured
Imperfection Machines: The Place of Print at Facebook
scottboms
269
13k
What’s in a name? Adding method to the madness
productmarketing
PRO
24
3.8k
The Cost Of JavaScript in 2023
addyosmani
55
9.3k
Rebuilding a faster, lazier Slack
samanthasiow
84
9.3k
Navigating Team Friction
lara
190
16k
The Power of CSS Pseudo Elements
geoffreycrofte
80
6.1k
KATA
mclloyd
PRO
32
15k
Typedesign – Prime Four
hannesfritz
42
2.9k
Reflections from 52 weeks, 52 projects
jeffersonlam
355
21k
The Myth of the Modular Monolith - Day 2 Keynote - Rails World 2024
eileencodes
26
3.2k
Evolution of real-time – Irina Nazarova, EuRuKo, 2024
irinanazarova
9
1k
Making Projects Easy
brettharned
120
6.5k
Transcript
None
・G-methods for time-fixed treatments 本日の内容 ・The g-formula for time-varying treatments
・IP weighting for time-varying treatments ・A doubly robust estimator for time-varying treatments
・G-methods for time-fixed treatments 本日の内容 ・The g-formula for time-varying treatments
・IP weighting for time-varying treatments ・A doubly robust estimator for time-varying treatments
Stratification effect measure modification (-) effect measure modification (+) Mantel-Haenszel
method 別々にオッズ比を報告
Why model? effect measure modification (-) effect measure modification (+)
別々にオッズ比を報告(1つの効果を報告できない) g-methods
g-formula A=1を代入 A=0を代入
IP weighting marginal structural model
Conditional or Marginal? outcome regression saturated parametric stratification g-formula IP
weighting g-estimation or algebraically equivalent
Time-varying treatment g-methods
・G-methods for time-fixed treatments 本日の内容 ・The g-formula for time-varying treatments
・IP weighting for time-varying treatments ・A doubly robust estimator for time-varying treatments
前提 ・本章ではidentifiability conditions(sequential exchangeability, positivity, and consistency)のviolationが ないものとする。 ・static treatment
strategies (always treat vs. never treat) の効果を推定する。
g-formula (weighted average) ・time-fixed treatment (A1 の反実アウトカム) ・time-varying treatment
g-formula (weighted average)
g-formula (weighted average)
g-formula (simulation) のシミュレーション と
g-formulaの注意点 ・DAGに基づいたcovariates L1 をモデルに含める ・static sequential exchangeabilityが成立すればstatic treatment strategyの効果はidentify可能
g-formulaの一般化 ・static treatment strategy ・dynamic treatment strategy linear regression logistic
regression
・G-methods for time-fixed treatments 本日の内容 ・The g-formula for time-varying treatments
・IP weighting for time-varying treatments ・A doubly robust estimator for time-varying treatments
IP weighting (weights) ・nonstabilized IP weights ・ stabilized IP weights
IP weighting (non-stabilized)
Stabilized weights non-stabilized weights: stabilized weights: Lと独立であればよい Lと独立であればよい
IP weighting (stabilized)
IP weightingの一般化 ・nonstabilized IP weights ・ stabilized IP weights logistic
regression logistic regression (misspecifiedでも可)
Marginal Structural Model ・2K > Nのときは推定できない ・marginal structural mean model
stabilized IP weightsを使って推定 misspecified??
Effect Measure Modification ・baseline variable VによるEMMがある場合、marginal structural modelは以下の通り(parametric) stabilized IP
weightsを使って推定 Vに入れて良いのはbaseline variableだけ
・G-methods for time-fixed treatments 本日の内容 ・The g-formula for time-varying treatments
・IP weighting for time-varying treatments ・A doubly robust estimator for time-varying treatments
Doubly Robust Estimator ・g-formula ・ IP weighting
1. Doubly Robust (time-fixed) 2. 3. A=1とA=0でそれぞれ を推定 を推定 ,
をLについて標準化
1. Doubly Robust (time-varying) 2. 3. を推定 からパラメータ を求める。 を求めておく
を推定し、Aの値に応じた を求める。 これを繰り返して を求める。 always treat
Discussion