Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
G-methods for time-varying treatments (Causal i...
Search
Shuntaro Sato
November 25, 2020
Science
0
3.5k
G-methods for time-varying treatments (Causal inference: What if, Chapter 21-1)
Keywords: 因果推論, Time-varying, G-formula, IP weighting, Doubly robust estimation
Shuntaro Sato
November 25, 2020
Tweet
Share
More Decks by Shuntaro Sato
See All by Shuntaro Sato
単施設でできる臨床研究の考え方
shuntaros
0
3.5k
TRIPOD+AI Expandedチェックリスト 有志翻訳による日本語版 version.1.1
shuntaros
0
310
仮説検定とP値
shuntaros
8
11k
Target trial emulationの概要
shuntaros
2
3.6k
Win ratio その2
shuntaros
0
560
Win ratioとは何か?
shuntaros
0
3.1k
ICH E9 (R1) 臨床試験のための統計的原則〜中間事象に対するストラテジー
shuntaros
1
1.2k
「回帰分析から分かること」と「変数選択」
shuntaros
17
21k
対照群がない研究デザインで効果を推定する(時系列分断デザイン・自己対照研究デザイン)
shuntaros
5
5.8k
Other Decks in Science
See All in Science
Celebrate UTIG: Staff and Student Awards 2025
utig
0
680
Algorithmic Aspects of Quiver Representations
tasusu
0
180
凸最適化からDC最適化まで
santana_hammer
1
350
コンピュータビジョンによるロボットの視覚と判断:宇宙空間での適応と課題
hf149
1
520
白金鉱業Meetup_Vol.20 効果検証ことはじめ / Introduction to Impact Evaluation
brainpadpr
2
1.6k
LayerXにおける業務の完全自動運転化に向けたAI技術活用事例 / layerx-ai-jsai2025
shimacos
2
21k
Accelerating operator Sinkhorn iteration with overrelaxation
tasusu
0
180
デジタルアーカイブの教育利用促進を目指したメタデータLOD基盤に関する研究 / Research on a Metadata LOD Platform for Promoting Educational Uses of Digital Archives
masao
0
140
Performance Evaluation and Ranking of Drivers in Multiple Motorsports Using Massey’s Method
konakalab
0
140
機械学習 - 決定木からはじめる機械学習
trycycle
PRO
0
1.2k
知能とはなにかーヒトとAIのあいだー
tagtag
PRO
0
170
機械学習 - SVM
trycycle
PRO
1
970
Featured
See All Featured
Accessibility Awareness
sabderemane
0
45
Organizational Design Perspectives: An Ontology of Organizational Design Elements
kimpetersen
PRO
1
70
Unsuck your backbone
ammeep
671
58k
Become a Pro
speakerdeck
PRO
31
5.8k
The Pragmatic Product Professional
lauravandoore
37
7.1k
Ruling the World: When Life Gets Gamed
codingconduct
0
130
The State of eCommerce SEO: How to Win in Today's Products SERPs - #SEOweek
aleyda
2
9.4k
A Tale of Four Properties
chriscoyier
162
24k
The Hidden Cost of Media on the Web [PixelPalooza 2025]
tammyeverts
2
150
Marketing Yourself as an Engineer | Alaka | Gurzu
gurzu
0
120
[SF Ruby Conf 2025] Rails X
palkan
0
730
Effective software design: The role of men in debugging patriarchy in IT @ Voxxed Days AMS
baasie
0
210
Transcript
None
・G-methods for time-fixed treatments 本日の内容 ・The g-formula for time-varying treatments
・IP weighting for time-varying treatments ・A doubly robust estimator for time-varying treatments
・G-methods for time-fixed treatments 本日の内容 ・The g-formula for time-varying treatments
・IP weighting for time-varying treatments ・A doubly robust estimator for time-varying treatments
Stratification effect measure modification (-) effect measure modification (+) Mantel-Haenszel
method 別々にオッズ比を報告
Why model? effect measure modification (-) effect measure modification (+)
別々にオッズ比を報告(1つの効果を報告できない) g-methods
g-formula A=1を代入 A=0を代入
IP weighting marginal structural model
Conditional or Marginal? outcome regression saturated parametric stratification g-formula IP
weighting g-estimation or algebraically equivalent
Time-varying treatment g-methods
・G-methods for time-fixed treatments 本日の内容 ・The g-formula for time-varying treatments
・IP weighting for time-varying treatments ・A doubly robust estimator for time-varying treatments
前提 ・本章ではidentifiability conditions(sequential exchangeability, positivity, and consistency)のviolationが ないものとする。 ・static treatment
strategies (always treat vs. never treat) の効果を推定する。
g-formula (weighted average) ・time-fixed treatment (A1 の反実アウトカム) ・time-varying treatment
g-formula (weighted average)
g-formula (weighted average)
g-formula (simulation) のシミュレーション と
g-formulaの注意点 ・DAGに基づいたcovariates L1 をモデルに含める ・static sequential exchangeabilityが成立すればstatic treatment strategyの効果はidentify可能
g-formulaの一般化 ・static treatment strategy ・dynamic treatment strategy linear regression logistic
regression
・G-methods for time-fixed treatments 本日の内容 ・The g-formula for time-varying treatments
・IP weighting for time-varying treatments ・A doubly robust estimator for time-varying treatments
IP weighting (weights) ・nonstabilized IP weights ・ stabilized IP weights
IP weighting (non-stabilized)
Stabilized weights non-stabilized weights: stabilized weights: Lと独立であればよい Lと独立であればよい
IP weighting (stabilized)
IP weightingの一般化 ・nonstabilized IP weights ・ stabilized IP weights logistic
regression logistic regression (misspecifiedでも可)
Marginal Structural Model ・2K > Nのときは推定できない ・marginal structural mean model
stabilized IP weightsを使って推定 misspecified??
Effect Measure Modification ・baseline variable VによるEMMがある場合、marginal structural modelは以下の通り(parametric) stabilized IP
weightsを使って推定 Vに入れて良いのはbaseline variableだけ
・G-methods for time-fixed treatments 本日の内容 ・The g-formula for time-varying treatments
・IP weighting for time-varying treatments ・A doubly robust estimator for time-varying treatments
Doubly Robust Estimator ・g-formula ・ IP weighting
1. Doubly Robust (time-fixed) 2. 3. A=1とA=0でそれぞれ を推定 を推定 ,
をLについて標準化
1. Doubly Robust (time-varying) 2. 3. を推定 からパラメータ を求める。 を求めておく
を推定し、Aの値に応じた を求める。 これを繰り返して を求める。 always treat
Discussion