Upgrade to Pro — share decks privately, control downloads, hide ads and more …

G-methods for time-varying treatments (Causal inference: What if, Chapter 21-1)

Shuntaro Sato
November 25, 2020

G-methods for time-varying treatments (Causal inference: What if, Chapter 21-1)

Keywords: 因果推論, Time-varying, G-formula, IP weighting, Doubly robust estimation

Shuntaro Sato

November 25, 2020
Tweet

More Decks by Shuntaro Sato

Other Decks in Science

Transcript

  1. View Slide

  2. ・G-methods for time-fixed treatments
    本日の内容
    ・The g-formula for time-varying treatments
    ・IP weighting for time-varying treatments
    ・A doubly robust estimator for time-varying
    treatments

    View Slide

  3. ・G-methods for time-fixed treatments
    本日の内容
    ・The g-formula for time-varying treatments
    ・IP weighting for time-varying treatments
    ・A doubly robust estimator for time-varying
    treatments

    View Slide

  4. Stratification
    effect measure modification (-)
    effect measure modification (+)
    Mantel-Haenszel method
    別々にオッズ比を報告

    View Slide

  5. Why model?
    effect measure modification (-)
    effect measure modification (+)
    別々にオッズ比を報告(1つの効果を報告できない)
    g-methods

    View Slide

  6. g-formula
    A=1を代入
    A=0を代入

    View Slide

  7. IP weighting
    marginal structural model

    View Slide

  8. Conditional or Marginal?
    outcome regression
    saturated parametric
    stratification
    g-formula
    IP weighting
    g-estimation
    or
    algebraically equivalent

    View Slide

  9. Time-varying treatment
    g-methods

    View Slide

  10. ・G-methods for time-fixed treatments
    本日の内容
    ・The g-formula for time-varying treatments
    ・IP weighting for time-varying treatments
    ・A doubly robust estimator for time-varying
    treatments

    View Slide

  11. 前提
    ・本章ではidentifiability conditions(sequential
    exchangeability, positivity, and consistency)のviolationが
    ないものとする。
    ・static treatment strategies (always treat vs. never treat)
    の効果を推定する。

    View Slide

  12. g-formula (weighted average)
    ・time-fixed treatment (A1
    の反実アウトカム)
    ・time-varying treatment

    View Slide

  13. g-formula (weighted average)

    View Slide

  14. g-formula (weighted average)

    View Slide

  15. g-formula (simulation)
    のシミュレーション

    View Slide

  16. g-formulaの注意点
    ・DAGに基づいたcovariates L1
    をモデルに含める
    ・static sequential exchangeabilityが成立すればstatic
    treatment strategyの効果はidentify可能

    View Slide

  17. g-formulaの一般化
    ・static treatment strategy
    ・dynamic treatment strategy
    linear regression logistic regression

    View Slide

  18. ・G-methods for time-fixed treatments
    本日の内容
    ・The g-formula for time-varying treatments
    ・IP weighting for time-varying treatments
    ・A doubly robust estimator for time-varying
    treatments

    View Slide

  19. IP weighting (weights)
    ・nonstabilized IP weights
    ・ stabilized IP weights

    View Slide

  20. IP weighting (non-stabilized)

    View Slide

  21. Stabilized weights
    non-stabilized weights: stabilized weights:
    Lと独立であればよい Lと独立であればよい

    View Slide

  22. IP weighting (stabilized)

    View Slide

  23. IP weightingの一般化
    ・nonstabilized IP weights
    ・ stabilized IP weights
    logistic regression
    logistic regression
    (misspecifiedでも可)

    View Slide

  24. Marginal Structural Model
    ・2K > Nのときは推定できない
    ・marginal structural mean model
    stabilized IP weightsを使って推定
    misspecified??

    View Slide

  25. Effect Measure Modification
    ・baseline variable VによるEMMがある場合、marginal
    structural modelは以下の通り(parametric)
    stabilized IP weightsを使って推定
    Vに入れて良いのはbaseline variableだけ

    View Slide

  26. ・G-methods for time-fixed treatments
    本日の内容
    ・The g-formula for time-varying treatments
    ・IP weighting for time-varying treatments
    ・A doubly robust estimator for time-varying
    treatments

    View Slide

  27. Doubly Robust Estimator
    ・g-formula
    ・ IP weighting

    View Slide

  28. 1.
    Doubly Robust (time-fixed)
    2.
    3. A=1とA=0でそれぞれ
    を推定
    を推定
    ,
    をLについて標準化

    View Slide

  29. 1.
    Doubly Robust (time-varying)
    2.
    3.
    を推定
    からパラメータ
    を求める。
    を求めておく
    を推定し、Aの値に応じた を求める。
    これを繰り返して を求める。
    always treat

    View Slide

  30. Discussion

    View Slide