Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
G-methods for time-varying treatments (Causal i...
Search
Shuntaro Sato
November 25, 2020
Science
0
3.1k
G-methods for time-varying treatments (Causal inference: What if, Chapter 21-1)
Keywords: 因果推論, Time-varying, G-formula, IP weighting, Doubly robust estimation
Shuntaro Sato
November 25, 2020
Tweet
Share
More Decks by Shuntaro Sato
See All by Shuntaro Sato
TRIPOD+AI Expandedチェックリスト 有志翻訳による日本語版 version.1.1
shuntaros
0
80
仮説検定とP値
shuntaros
8
9.5k
Target trial emulationの概要
shuntaros
2
3k
Win ratio その2
shuntaros
0
470
Win ratioとは何か?
shuntaros
0
2.6k
ICH E9 (R1) 臨床試験のための統計的原則〜中間事象に対するストラテジー
shuntaros
1
990
「回帰分析から分かること」と「変数選択」
shuntaros
16
19k
対照群がない研究デザインで効果を推定する(時系列分断デザイン・自己対照研究デザイン)
shuntaros
5
5.4k
自己対照デザイン:ケースクロスオーバーデザイン・ケースタイムコントロールデザイン
shuntaros
1
2.5k
Other Decks in Science
See All in Science
重複排除・高速バックアップ・ランサムウェア対策 三拍子そろったExaGrid × Veeam連携セミナー
climbteam
0
210
Celebrate UTIG: Staff and Student Awards 2024
utig
0
610
Design of three-dimensional binary manipulators for pick-and-place task avoiding obstacles (IECON2024)
konakalab
0
140
理論計算機科学における 数学の応用: 擬似ランダムネス
nobushimi
1
410
論文紹介: PEFA: Parameter-Free Adapters for Large-scale Embedding-based Retrieval Models (WSDM 2024)
ynakano
0
230
Iniciativas independentes de divulgação científica: o caso do Movimento #CiteMulheresNegras
taisso
0
1.1k
Spectral Sparsification of Hypergraphs
tasusu
0
260
FRAM - 複雑な社会技術システムの理解と分析
__ymgc__
1
110
Coqで選択公理を形式化してみた
soukouki
0
310
Explanatory material
yuki1986
0
110
白金鉱業Meetup Vol.16_数理最適化案件のはじめかた・すすめかた
brainpadpr
3
1.5k
非同期コミュニケーションの構造 -チャットツールを用いた組織における情報の流れの設計について-
koisono
0
220
Featured
See All Featured
XXLCSS - How to scale CSS and keep your sanity
sugarenia
248
1.3M
We Have a Design System, Now What?
morganepeng
51
7.5k
Writing Fast Ruby
sferik
628
61k
Java REST API Framework Comparison - PWX 2021
mraible
29
8.4k
Designing Dashboards & Data Visualisations in Web Apps
destraynor
231
53k
Art, The Web, and Tiny UX
lynnandtonic
298
20k
Distributed Sagas: A Protocol for Coordinating Microservices
caitiem20
330
21k
How to train your dragon (web standard)
notwaldorf
91
5.9k
[Rails World 2023 - Day 1 Closing Keynote] - The Magic of Rails
eileencodes
33
2.1k
Templates, Plugins, & Blocks: Oh My! Creating the theme that thinks of everything
marktimemedia
30
2.3k
CoffeeScript is Beautiful & I Never Want to Write Plain JavaScript Again
sstephenson
160
15k
How To Stay Up To Date on Web Technology
chriscoyier
790
250k
Transcript
None
・G-methods for time-fixed treatments 本日の内容 ・The g-formula for time-varying treatments
・IP weighting for time-varying treatments ・A doubly robust estimator for time-varying treatments
・G-methods for time-fixed treatments 本日の内容 ・The g-formula for time-varying treatments
・IP weighting for time-varying treatments ・A doubly robust estimator for time-varying treatments
Stratification effect measure modification (-) effect measure modification (+) Mantel-Haenszel
method 別々にオッズ比を報告
Why model? effect measure modification (-) effect measure modification (+)
別々にオッズ比を報告(1つの効果を報告できない) g-methods
g-formula A=1を代入 A=0を代入
IP weighting marginal structural model
Conditional or Marginal? outcome regression saturated parametric stratification g-formula IP
weighting g-estimation or algebraically equivalent
Time-varying treatment g-methods
・G-methods for time-fixed treatments 本日の内容 ・The g-formula for time-varying treatments
・IP weighting for time-varying treatments ・A doubly robust estimator for time-varying treatments
前提 ・本章ではidentifiability conditions(sequential exchangeability, positivity, and consistency)のviolationが ないものとする。 ・static treatment
strategies (always treat vs. never treat) の効果を推定する。
g-formula (weighted average) ・time-fixed treatment (A1 の反実アウトカム) ・time-varying treatment
g-formula (weighted average)
g-formula (weighted average)
g-formula (simulation) のシミュレーション と
g-formulaの注意点 ・DAGに基づいたcovariates L1 をモデルに含める ・static sequential exchangeabilityが成立すればstatic treatment strategyの効果はidentify可能
g-formulaの一般化 ・static treatment strategy ・dynamic treatment strategy linear regression logistic
regression
・G-methods for time-fixed treatments 本日の内容 ・The g-formula for time-varying treatments
・IP weighting for time-varying treatments ・A doubly robust estimator for time-varying treatments
IP weighting (weights) ・nonstabilized IP weights ・ stabilized IP weights
IP weighting (non-stabilized)
Stabilized weights non-stabilized weights: stabilized weights: Lと独立であればよい Lと独立であればよい
IP weighting (stabilized)
IP weightingの一般化 ・nonstabilized IP weights ・ stabilized IP weights logistic
regression logistic regression (misspecifiedでも可)
Marginal Structural Model ・2K > Nのときは推定できない ・marginal structural mean model
stabilized IP weightsを使って推定 misspecified??
Effect Measure Modification ・baseline variable VによるEMMがある場合、marginal structural modelは以下の通り(parametric) stabilized IP
weightsを使って推定 Vに入れて良いのはbaseline variableだけ
・G-methods for time-fixed treatments 本日の内容 ・The g-formula for time-varying treatments
・IP weighting for time-varying treatments ・A doubly robust estimator for time-varying treatments
Doubly Robust Estimator ・g-formula ・ IP weighting
1. Doubly Robust (time-fixed) 2. 3. A=1とA=0でそれぞれ を推定 を推定 ,
をLについて標準化
1. Doubly Robust (time-varying) 2. 3. を推定 からパラメータ を求める。 を求めておく
を推定し、Aの値に応じた を求める。 これを繰り返して を求める。 always treat
Discussion