$30 off During Our Annual Pro Sale. View Details »
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Streaming Ingestion & Processing at Flipkart
Search
Siddhartha Reddy
May 15, 2015
Technology
0
400
Streaming Ingestion & Processing at Flipkart
Presented at the Bangalore Hadoop Meetup held on 15th May 2015.
Siddhartha Reddy
May 15, 2015
Tweet
Share
More Decks by Siddhartha Reddy
See All by Siddhartha Reddy
Future Patterns in Data Ecosystem
sids
1
200
CAP Theorem: You don’t need CP, you don’t want AP, and you can’t have CA
sids
6
12k
Other Decks in Technology
See All in Technology
意外とあった SQL Server 関連アップデート + Database Savings Plans
stknohg
PRO
0
300
研究開発×プロダクトマネジメントへの挑戦 / ly_mlpm_meetup
sansan_randd
0
100
A Compass of Thought: Guiding the Future of Test Automation ( #jassttokai25 , #jassttokai )
teyamagu
PRO
1
250
計算機科学をRubyと歩む 〜DFA型正規表現エンジンをつくる~
ydah
3
210
因果AIへの招待
sshimizu2006
0
940
チーリンについて
hirotomotaguchi
5
1.6k
Playwright x GitHub Actionsで実現する「レビューしやすい」E2Eテストレポート
kinosuke01
0
500
GitHub Copilotを使いこなす 実例に学ぶAIコーディング活用術
74th
3
1.9k
AI活用によるPRレビュー改善の歩み ― 社内全体に広がる学びと実践
lycorptech_jp
PRO
1
190
MapKitとオープンデータで実現する地図情報の拡張と可視化
zozotech
PRO
1
130
今年のデータ・ML系アップデートと気になるアプデのご紹介
nayuts
1
220
非CUDAの悲哀 〜Claude Code と挑んだ image to 3D “Hunyuan3D”を EVO-X2(Ryzen AI Max+395)で動作させるチャレンジ〜
hawkymisc
1
160
Featured
See All Featured
For a Future-Friendly Web
brad_frost
180
10k
"I'm Feeling Lucky" - Building Great Search Experiences for Today's Users (#IAC19)
danielanewman
231
22k
Being A Developer After 40
akosma
91
590k
Leading Effective Engineering Teams in the AI Era
addyosmani
8
1.3k
The Psychology of Web Performance [Beyond Tellerrand 2023]
tammyeverts
49
3.2k
Done Done
chrislema
186
16k
Context Engineering - Making Every Token Count
addyosmani
9
500
A better future with KSS
kneath
240
18k
Music & Morning Musume
bryan
46
7k
Large-scale JavaScript Application Architecture
addyosmani
515
110k
Building Flexible Design Systems
yeseniaperezcruz
330
39k
How GitHub (no longer) Works
holman
316
140k
Transcript
Streaming Ingestion & Processing at Flipkart Siddhartha Reddy @sids
Flipkart Data Platform (an oversimplified view)
Streaming Ingestion
Choices • push, not pull • schemas & validations
Streaming Ingestion v1.0
None
• Push 㱺 accountability (with source teams) • good call!
• Schemas 㱺 contracts for consumers • can make assumptions that are assured to be true • Insufficient tooling 㱺 too many “ingestion frameworks” • adopt some frameworks & offer as tools! • Synchronous error handling 㱺 complexity • accept all data
Streaming Ingestion v2.0
Stream Processing
An Example
Streaming Joins: Example It works! But… how do we deal
with lookup failures?
Streaming Joins: Handling Failures
None
None
Streaming Joins: Bootstrapping With a little help from MR friends
Streaming Joins: But… The example that doesn’t really work correctly
Streaming Joins
In summary • Streaming Ingestion: push, schemas & validation, HTTP
service, local daemon, change data capture • Streaming Joins: indexing, lookup tables, map-joins, retry queue, batch re-driver sid@flipkart.com