Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Streaming Ingestion & Processing at Flipkart
Search
Siddhartha Reddy
May 15, 2015
Technology
0
390
Streaming Ingestion & Processing at Flipkart
Presented at the Bangalore Hadoop Meetup held on 15th May 2015.
Siddhartha Reddy
May 15, 2015
Tweet
Share
More Decks by Siddhartha Reddy
See All by Siddhartha Reddy
Future Patterns in Data Ecosystem
sids
1
190
CAP Theorem: You don’t need CP, you don’t want AP, and you can’t have CA
sids
6
11k
Other Decks in Technology
See All in Technology
許しとアジャイル
jnuank
1
120
リーダーになったら未来を語れるようになろう/Speak the Future
sanogemaru
0
280
コンテキストエンジニアリングとは? 考え方と応用方法
findy_eventslides
4
900
フルカイテン株式会社 エンジニア向け採用資料
fullkaiten
0
9k
Pure Goで体験するWasmの未来
askua
1
180
非エンジニアのあなたもできる&もうやってる!コンテキストエンジニアリング
findy_eventslides
3
910
AI駆動開発を推進するためにサービス開発チームで 取り組んでいること
noayaoshiro
0
170
KMP の Swift export
kokihirokawa
0
330
SREとソフトウェア開発者の合同チームはどのようにS3のコストを削減したか?
muziyoshiz
1
100
about #74462 go/token#FileSet
tomtwinkle
1
290
Optuna DashboardにおけるPLaMo2連携機能の紹介 / PFN LLM セミナー
pfn
PRO
1
880
空間を設計する力を考える / 20251004 Naoki Takahashi
shift_evolve
PRO
3
330
Featured
See All Featured
Fashionably flexible responsive web design (full day workshop)
malarkey
407
66k
Measuring & Analyzing Core Web Vitals
bluesmoon
9
610
Distributed Sagas: A Protocol for Coordinating Microservices
caitiem20
333
22k
Bash Introduction
62gerente
615
210k
Building a Modern Day E-commerce SEO Strategy
aleyda
43
7.7k
[Rails World 2023 - Day 1 Closing Keynote] - The Magic of Rails
eileencodes
36
2.5k
A designer walks into a library…
pauljervisheath
209
24k
The MySQL Ecosystem @ GitHub 2015
samlambert
251
13k
GraphQLとの向き合い方2022年版
quramy
49
14k
How to Think Like a Performance Engineer
csswizardry
27
2k
For a Future-Friendly Web
brad_frost
180
9.9k
Building an army of robots
kneath
306
46k
Transcript
Streaming Ingestion & Processing at Flipkart Siddhartha Reddy @sids
Flipkart Data Platform (an oversimplified view)
Streaming Ingestion
Choices • push, not pull • schemas & validations
Streaming Ingestion v1.0
None
• Push 㱺 accountability (with source teams) • good call!
• Schemas 㱺 contracts for consumers • can make assumptions that are assured to be true • Insufficient tooling 㱺 too many “ingestion frameworks” • adopt some frameworks & offer as tools! • Synchronous error handling 㱺 complexity • accept all data
Streaming Ingestion v2.0
Stream Processing
An Example
Streaming Joins: Example It works! But… how do we deal
with lookup failures?
Streaming Joins: Handling Failures
None
None
Streaming Joins: Bootstrapping With a little help from MR friends
Streaming Joins: But… The example that doesn’t really work correctly
Streaming Joins
In summary • Streaming Ingestion: push, schemas & validation, HTTP
service, local daemon, change data capture • Streaming Joins: indexing, lookup tables, map-joins, retry queue, batch re-driver sid@flipkart.com