Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
DeNAにおけるデータ活用事例 〜移動体データ活用によるサービス創出とその基盤 / Data ...
Search
soymsk
March 28, 2019
Technology
0
330
DeNAにおけるデータ活用事例 〜移動体データ活用によるサービス創出とその基盤 / Data Driven Service in Taxi hiring app MOV
Rakuten Tech Meetup #1 の登壇資料です
soymsk
March 28, 2019
Tweet
Share
More Decks by soymsk
See All by soymsk
[SUSTEN 勉強会]マイナンバーカードの仕組み
soymsk
0
180
Google_Cloud_Next_19_AI_ML_Summary_public.pdf
soymsk
6
1.8k
Introduction of GCP Dataflow
soymsk
1
220
wavenet
soymsk
0
76
Other Decks in Technology
See All in Technology
プロダクト価値を引き上げる、「課題の再定義」という習慣
moeka__c
0
210
パフォーマンスとコスト改善のために法人データ分析基盤をBigQueryに移行した話
seiya303
1
100
extensionとschema
yahonda
1
100
論文紹介 ”Long-Context LLMs Meet RAG: Overcoming Challenges for Long Inputs in RAG” @GDG Tokyo
shukob
0
270
Redmineの意外と知らない便利機能 (Redmine 6.0対応版)
vividtone
0
190
プロダクト観点で考えるデータ基盤の育成戦略 / Growth Strategy of Data Analytics Platforms from a Product Perspective
yamamotoyuta
0
250
カスタムインストラクションでGitHub Copilotをカスタマイズ!
07jp27
6
560
private spaceについてあれこれ調べてみた
operando
1
170
ココナラのセキュリティ組織の体制・役割・今後目指す世界
coconala_engineer
0
220
[2024年10月版] Notebook 2.0のご紹介 / Notebook2.0
databricksjapan
0
1.6k
re:Invent Recap (January 2025)
scalefactory
0
340
srekaigi2025-hajimete-ippo-aws
masakichieng
0
240
Featured
See All Featured
GraphQLの誤解/rethinking-graphql
sonatard
68
10k
Building an army of robots
kneath
302
45k
Performance Is Good for Brains [We Love Speed 2024]
tammyeverts
7
600
Typedesign – Prime Four
hannesfritz
40
2.5k
How To Stay Up To Date on Web Technology
chriscoyier
790
250k
GitHub's CSS Performance
jonrohan
1030
460k
"I'm Feeling Lucky" - Building Great Search Experiences for Today's Users (#IAC19)
danielanewman
226
22k
Optimizing for Happiness
mojombo
376
70k
[RailsConf 2023] Rails as a piece of cake
palkan
53
5.2k
個人開発の失敗を避けるイケてる考え方 / tips for indie hackers
panda_program
98
18k
Done Done
chrislema
182
16k
A Modern Web Designer's Workflow
chriscoyier
693
190k
Transcript
DeNAにおけるデータ活用事例 〜移動体データ活用によるサービス創出とその基盤〜 Ryosuke Mashiko AI System Dept. Machine Learning Engineering
Team DeNA Co,. Ltd
はじめに ▪ 本日お話する内容は、時間の関係上アルゴリズムには踏み込みません。 ▪ 詳細は、この後の懇親会の場でお話できればと思います。
本日のお話 •DeNAのサービス領域 •DeNAにおけるデータ活用 •分析/改善/創出 •事例紹介 •移動体データによる開発中サービスのご紹介 3
DeNAのサービス領域 • ゲーム事業をはじめとして、多様な領域のサービスを展開 4 Game Entertainment Health Care Sports Automotive
AI 私が所属しているところ CV 強化学習 DS MLEG ・・・・・
DeNAにおけるデータ活用 5
DeNAにおけるデータ活用 6 創出 改善 分析 既存サービスの理解を深める ・離脱分析 ・KPI分析 ・売上予想 データによる新たなサービス創出
データによって、既存サービスを改善 ・レコメンデーション AI R&Dチームの立ち上げにより、各プロダクトへの機械学習の適用が加速
DeNA x AI = ? 7
事例: 逆転オセロニアにおけるゲームAI Slide: CEDEC2018「『逆転オセロニア』におけるAI活用」 https://www.slideshare.net/juneokumura/cedec2018ai 8 • プレイヤーのプレイログ(棋譜)を大量に用いて、対戦AIを開発
事例: AIによるアニメ生成の挑戦 Youtube: https://www.youtube.com/watch?v=5OuwwV_RwPU Slide: 「AIによるアニメ生成の挑戦」 https://www.slideshare.net/hamadakoichi/anime-generation 9
タクシー配車アプリ<MOV>における 空車タクシーナビゲーションシステム 移動体データ活用によるサービス創出とその基盤 10
オートモーティブ事業本部 11
MOV •タクシー配車アプリ •2018年4月リリース •東京、神奈川エリアで展開中 12
タクシー乗務員向けナビゲーションシステム •”空車(流し)”タクシー向けのナビゲーション • 現在車両位置から「最も将来期待売上の高いルー ト」を推薦 • 顧客獲得確率の高いルート • 長距離顧客のいそうなルート •機械学習:
•対象エリアのすべての道路ごとに直近将来の顧 客獲得確率の予測 13
14
15 タクシー1台あたりの売上最大化 タクシー運行全体を効率化
16 裏側の話
• 横浜スタジアム • 横浜駅 • 桜木町駅 • 石川町駅 • 黄金町駅
ML Backend •データ: MOV乗務員端末の各種ログ •例: 車両の各種データ: 位置、ステータス、 運賃 •サービス当初よりリアルタイムに蓄積 •一定間隔ごとに,
最新のトレンドデータを元に機械学習モデル が対象エリアの全道路に対してバッチ推論を実行 •簡単に言うと、道路の走行価値を算出 •現在走行道路から、最も将来価値が高くなるようにリアルタイム にルート探索 18
19
参考: 本日お話できなかったアルゴリズム、実証実験の結果は下記に て公開しています DeNA TechCon 2019 「モビリティインテリジェンスの社会実装」 Slide: https://www.slideshare.net/dena_tech/dena-techcon-2019-132196217 Youtube:
https://www.youtube.com/watch?v=Zy8S4MXxuRA 20
https://dena.ai/ 21
自己紹介 ▪ 益子 遼介 (@soymsk) ▪ 株式会社ディー・エヌ・エー ⁃ AIシステム部 MLエンジニアリンググループ ▪
2012年 ~ サーバーサイドエンジニア ▪ 2015年 ~ AIシステム部 ⁃ 分散処理基盤(Hadoop, Elasticsearch … ) ⁃ MLエンジニア