Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
wavenet
Search
soymsk
April 27, 2017
Technology
0
84
wavenet
soymsk
April 27, 2017
Tweet
Share
More Decks by soymsk
See All by soymsk
[SUSTEN 勉強会]マイナンバーカードの仕組み
soymsk
0
230
Google_Cloud_Next_19_AI_ML_Summary_public.pdf
soymsk
6
1.9k
DeNAにおけるデータ活用事例 〜移動体データ活用によるサービス創出とその基盤 / Data Driven Service in Taxi hiring app MOV
soymsk
0
370
Introduction of GCP Dataflow
soymsk
1
240
Other Decks in Technology
See All in Technology
Introdução a Service Mesh usando o Istio
aeciopires
0
200
Zephyr(RTOS)にEdge AIを組み込んでみた話
iotengineer22
0
130
AWS Control Tower に学ぶ! IAM Identity Center 権限設計の第一歩 / IAM Identity Center with Control Tower
y___u
1
200
HR Force における DWH の併用事例 ~ サービス基盤としての BigQuery / 分析基盤としての Snowflake ~@Cross Data Platforms Meetup #2「BigQueryと愉快な仲間たち」
ryo_suzuki
0
230
AWSでAgentic AIを開発するための前提知識の整理
nasuvitz
2
190
Geospatialの世界最前線を探る [2025年版]
dayjournal
1
230
リセラー企業のテクサポ担当が考える、生成 AI 時代のトラブルシュート 2025
kazzpapa3
1
370
React19.2のuseEffectEventを追う
maguroalternative
2
480
プロポーザルのコツ ~ Kaigi on Rails 2025 初参加で3名の登壇を実現 ~
naro143
1
250
Node.js 2025: What's new and what's next
ruyadorno
0
400
アイテムレビュー機能導入からの学びと改善
zozotech
PRO
0
190
Railsの話をしよう
yahonda
0
160
Featured
See All Featured
How to Create Impact in a Changing Tech Landscape [PerfNow 2023]
tammyeverts
55
3k
Product Roadmaps are Hard
iamctodd
PRO
54
11k
Building an army of robots
kneath
306
46k
Principles of Awesome APIs and How to Build Them.
keavy
127
17k
The Success of Rails: Ensuring Growth for the Next 100 Years
eileencodes
46
7.7k
VelocityConf: Rendering Performance Case Studies
addyosmani
332
24k
The Pragmatic Product Professional
lauravandoore
36
6.9k
Save Time (by Creating Custom Rails Generators)
garrettdimon
PRO
32
1.6k
It's Worth the Effort
3n
187
28k
A Tale of Four Properties
chriscoyier
161
23k
Visualizing Your Data: Incorporating Mongo into Loggly Infrastructure
mongodb
48
9.7k
ReactJS: Keep Simple. Everything can be a component!
pedronauck
667
120k
Transcript
Wavenet 2017/04/27 @soymsk
Wavenet • 2016ʹDeepMind͕ൃදͨ͠Ի߹ΞϧΰϦζϜ • Text to Speech(TTS)ͷͰߴ͍Ի߹ͷਫ਼Λୡ͠ ͨɻ • ࣮͕ެ։͞Ε͓ͯΒͣɺ·ͨࣜগͳ͘ɺ࣮ࡍʹͲͷΑ
͏ʹͳ͍ͬͯΔ͔ෆ໌ͳॴଟ͍ • Concatenate Text to Speech • parametric TTS parametric TTS • PixelRNN • PixelCNN 8BWFOFU +
ैདྷͷख๏ • Concatenate Text to Speech • ͍ԻσʔλΛେྔʹσʔλϕʔεʹ֨ೲ͠ɺͦΕΛͭͳ͗߹ΘͤΔख๏ • طଘͷσʔλΛͭͳ͗߹ΘͤΔ͚ͩͳͷͰɺڧௐɾ৭มߋͳͲ͕ۤखɻ·
ͨɺ߹ޙͷԻͷͭͳ͕ΓෆࣗવʹͳΓ͕ͪ • parametric TTS • ੜϞσϧʹΑͬͯԻ߹͢Δख๏ • ൃ༰ൃऀͷಛΛϞσϧͷೖྗͱͯ͠ίϯτϩʔϧͤ͞Δ͜ͱ͕Ͱ ͖ΔΑ͏ʹͳͬͨɻ • ͨͩ͠ɺࣗવͳൃɺͱݴ͍͍
ैདྷख๏
Wavenet
Wavenet • Wavenetաڈͷೖྗσʔλ͔Β࣍ͷԻ σʔλͷ֬Λ༧ଌ͢Δ t: ࣌ࠁ x: ೖྗԻ
ೖྗԻσʔλ • Իσʔλܗࣜ • ྔࢠԽ: 16bit • αϯϓϦϯάप: 44.1 kHz
(ԻCD)
Wavenetग़ྗσʔλܗࣜ • Ի৴߸Ұൠతʹ16bitͰྔࢠԽ͞Ε͓ͯΓɺͦ ͷ··Ͱ65,536ͷ1 of N ग़ྗϊʔυ͕ඞཁ • ԼهͷΑ͏ʹೖྗΛมͯ͠ѹॖ •
ԻͰҰൠతͳѹॖܗࣜ: μ-law 256ϊʔυ·Ͱѹॖ
8BWFOFU ЖMBX෮߸ t-1 0 ࣌ࠁtʹ͓͚Δग़ྗ: 1 of 256
Dilated causal convolution
Dilated causal convolution • ࣌ܥྻͷԻσʔλʹରͯ͠ɺRNNͰͳ͘ConvolutionͰֶशΛߦ͏ɻ • ΈࠐΈͷϑΟϧλΛ2ͱ͢ΔͱɺҎԼͷΑ͏ʹ4Ͱ5͔ͭ͠ΈΒΕͳ͍ɻʢ௨ৗͷ ࠐΈ) • 44.1kHz
(ԻCD)ͷೖྗΛѻ͏߹ɺ1ඵؒͷԻೖྗ͚ͩͰɺ44100ͷೖྗϊʔυ͕ඞཁ receptive field(ड༰) = 5
Dilated causal convolution • Dilated causal convolutionͰೖྗΛNݸඈ͠Ͱ࣍ͷʹೖྗ͢Δɻ • ͕ਂ͘ͳΔͨͼʹDilationͷΛഒʹ͢Δ •
DilationʹΑͬͯग़ྗϊʔυͷड༰Λ૿͢͜ͱ͕Ͱ͖Δ
Dilated causal convolution • 44100ͷೖྗ16ͷDilated causal convolution ͰΈΔ͜ͱ͕Մೳ • WavenetͰɺ࠷େDilation=512·ͰΛॏͶ(
1- block )ɺblockΛෳੵΈॏͶΔߏΛऔ͍ͬͯ Δɻ • Λਂֶͯ͘͠शͰ͖ΔΑ͏ʹResidualNetΛར ༻
None
• http://musyoku.github.io/images/post/ 2016-09-17/dilated_conv.gif
RNNͱWavenetͷֶशͷҧ͍ • RNNֶश࣌ɺ࣌ܥྻॱʹσʔλΛೖྗ͍ͯ͘͠ඞཁ͕͋ΔͨΊɺ࣌ؒ ͕͔͔Δɻ • WavenetCNNͷΑ͏ʹɺೖྗσʔλΛ࣌ܥྻʹॲཧ͢Δඞཁ͕ͳ͘ɺ ̍ʹωοτϫʔΫʹೖྗ͢ΔͨΊɺֶश͕ૣ͍ • αϯϓϧʹ͍ͭͯɺ࣌ܥྻॱʹֶश͢Δඞཁ͕ͳ͍ Wavenet
RNN
Wavenetͷߏ filter gate x: input k: layer
Conditional Wavenet • Conditional Pixel CNN ͱಉ༷ɺWavenetʹҙͷύϥϝʔλhಋೖ͢Δ ͜ͱͰɺWavenetΛύϥϝʔλͰૢ࡞ • Global
conditions: WavenetʹൃऀͷಛΛֶशͤ͞Δ ύϥϝʔλhʹΑͬͯൃશମͷதͰͷൃऀͷಛΛ࠶ݱͰ͖Δ ex: ࠃޠ͕ҟͳΔൃऀͷಛ શͯͷ࣌ؒεςοϓͰ࡞༻͢Δ߲
Conditional Wavenet • Local conditions: Wavenetʹݴ༿ͷಛΛֶशͤ͞Δ ݸʑͷ࣌ؒεςοϓͰ࡞༻͢Δ߲ ൃͷݴޠతಛΛύϥϝʔλͱͯ͠ೖྗͰ͖Δ ex: ୯ޠͷͭͳ͕ΓʹΑͬͯൃ͞Εͳ͍จࣈͳͲʁ
ੜ݁ՌσϞ https://deepmind.com/blog/wavenet-generative- model-raw-audio/
࣮ݧ݁Ռ • GoogleͷTTSσʔληοτΛར༻ֶͯ͠श • ैདྷख๏ʹൺͯߴ͍ਫ਼Λୡ
·ͱΊ • WavenetԻ߹ͷʹCNNͷख๏Λಋ ೖ͠ɺߴ͍߹ਫ਼Λୡͨ͠ • Dilated convolutionʹΑͬͯɺRNNͷΑ͏ʹ࣌ ܥྻσʔλʹద༻Ͱ͖ΔՄೳੑΛࣔͨ͠ɻ • Ի͚ͩͰͳ͘ɺԻָͷ߹ͳͲԠ༻ൣғ
͍
ࢀߟ • https://arxiv.org/abs/1609.03499 • ݪஶPDF • https://deepmind.com/blog/wavenet-generative-model-raw-audio/ • σϞ݁ՌͳͲ •
http://musyoku.github.io/2016/09/18/wavenet-a-generative-model-for-raw- audio/ • Chainer࣮Dilationͷ෦͕Θ͔Γ͍͢ • https://www.slideshare.net/DeepLearningJP2016/dlwavenet-a-generative- model-for-raw-audio