Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
wavenet
Search
soymsk
April 27, 2017
Technology
0
81
wavenet
soymsk
April 27, 2017
Tweet
Share
More Decks by soymsk
See All by soymsk
[SUSTEN 勉強会]マイナンバーカードの仕組み
soymsk
0
210
Google_Cloud_Next_19_AI_ML_Summary_public.pdf
soymsk
6
1.9k
DeNAにおけるデータ活用事例 〜移動体データ活用によるサービス創出とその基盤 / Data Driven Service in Taxi hiring app MOV
soymsk
0
360
Introduction of GCP Dataflow
soymsk
1
220
Other Decks in Technology
See All in Technology
Snowflake Summit 2025全体振り返り / Snowflake Summit 2025 Overall Review
mtpooh
2
190
初めてのAzure FunctionsをClaude Codeで作ってみた / My first Azure Functions using Claude Code
hideakiaoyagi
1
180
白金鉱業Meetup_Vol.19_PoCはデモで語れ!顧客の本音とインサイトを引き出すソリューション構築
brainpadpr
2
470
20250623 Findy Lunch LT Brown
3150
0
750
SFTPコンテナからファイルをダウンロードする
dip_tech
PRO
0
590
キャディでのApache Iceberg, Trino採用事例 -Apache Iceberg and Trino Usecase in CADDi--
caddi_eng
0
170
TerraformをSaaSで使うとAzureの運用がこんなに楽ちん!HCP Terraformって何?
mnakabayashi
0
300
VISITS_AIIoTビジネス共創ラボ登壇資料.pdf
iotcomjpadmin
0
140
変化する開発、進化する体系時代に適応するソフトウェアエンジニアの知識と考え方(JaSST'25 Kansai)
mizunori
0
130
BrainPadプログラミングコンテスト記念LT会2025_社内イベント&問題解説
brainpadpr
0
150
TechLION vol.41~MySQLユーザ会のほうから来ました / techlion41_mysql
sakaik
0
150
Welcome to the LLM Club
koic
0
130
Featured
See All Featured
Mobile First: as difficult as doing things right
swwweet
223
9.7k
Documentation Writing (for coders)
carmenintech
71
4.9k
Building a Modern Day E-commerce SEO Strategy
aleyda
41
7.3k
[RailsConf 2023] Rails as a piece of cake
palkan
55
5.6k
Music & Morning Musume
bryan
46
6.6k
Adopting Sorbet at Scale
ufuk
77
9.4k
Practical Tips for Bootstrapping Information Extraction Pipelines
honnibal
PRO
20
1.3k
Building Better People: How to give real-time feedback that sticks.
wjessup
367
19k
Performance Is Good for Brains [We Love Speed 2024]
tammyeverts
10
920
Speed Design
sergeychernyshev
31
1k
Agile that works and the tools we love
rasmusluckow
329
21k
The Cost Of JavaScript in 2023
addyosmani
51
8.4k
Transcript
Wavenet 2017/04/27 @soymsk
Wavenet • 2016ʹDeepMind͕ൃදͨ͠Ի߹ΞϧΰϦζϜ • Text to Speech(TTS)ͷͰߴ͍Ի߹ͷਫ਼Λୡ͠ ͨɻ • ࣮͕ެ։͞Ε͓ͯΒͣɺ·ͨࣜগͳ͘ɺ࣮ࡍʹͲͷΑ
͏ʹͳ͍ͬͯΔ͔ෆ໌ͳॴଟ͍ • Concatenate Text to Speech • parametric TTS parametric TTS • PixelRNN • PixelCNN 8BWFOFU +
ैདྷͷख๏ • Concatenate Text to Speech • ͍ԻσʔλΛେྔʹσʔλϕʔεʹ֨ೲ͠ɺͦΕΛͭͳ͗߹ΘͤΔख๏ • طଘͷσʔλΛͭͳ͗߹ΘͤΔ͚ͩͳͷͰɺڧௐɾ৭มߋͳͲ͕ۤखɻ·
ͨɺ߹ޙͷԻͷͭͳ͕ΓෆࣗવʹͳΓ͕ͪ • parametric TTS • ੜϞσϧʹΑͬͯԻ߹͢Δख๏ • ൃ༰ൃऀͷಛΛϞσϧͷೖྗͱͯ͠ίϯτϩʔϧͤ͞Δ͜ͱ͕Ͱ ͖ΔΑ͏ʹͳͬͨɻ • ͨͩ͠ɺࣗવͳൃɺͱݴ͍͍
ैདྷख๏
Wavenet
Wavenet • Wavenetաڈͷೖྗσʔλ͔Β࣍ͷԻ σʔλͷ֬Λ༧ଌ͢Δ t: ࣌ࠁ x: ೖྗԻ
ೖྗԻσʔλ • Իσʔλܗࣜ • ྔࢠԽ: 16bit • αϯϓϦϯάप: 44.1 kHz
(ԻCD)
Wavenetग़ྗσʔλܗࣜ • Ի৴߸Ұൠతʹ16bitͰྔࢠԽ͞Ε͓ͯΓɺͦ ͷ··Ͱ65,536ͷ1 of N ग़ྗϊʔυ͕ඞཁ • ԼهͷΑ͏ʹೖྗΛมͯ͠ѹॖ •
ԻͰҰൠతͳѹॖܗࣜ: μ-law 256ϊʔυ·Ͱѹॖ
8BWFOFU ЖMBX෮߸ t-1 0 ࣌ࠁtʹ͓͚Δग़ྗ: 1 of 256
Dilated causal convolution
Dilated causal convolution • ࣌ܥྻͷԻσʔλʹରͯ͠ɺRNNͰͳ͘ConvolutionͰֶशΛߦ͏ɻ • ΈࠐΈͷϑΟϧλΛ2ͱ͢ΔͱɺҎԼͷΑ͏ʹ4Ͱ5͔ͭ͠ΈΒΕͳ͍ɻʢ௨ৗͷ ࠐΈ) • 44.1kHz
(ԻCD)ͷೖྗΛѻ͏߹ɺ1ඵؒͷԻೖྗ͚ͩͰɺ44100ͷೖྗϊʔυ͕ඞཁ receptive field(ड༰) = 5
Dilated causal convolution • Dilated causal convolutionͰೖྗΛNݸඈ͠Ͱ࣍ͷʹೖྗ͢Δɻ • ͕ਂ͘ͳΔͨͼʹDilationͷΛഒʹ͢Δ •
DilationʹΑͬͯग़ྗϊʔυͷड༰Λ૿͢͜ͱ͕Ͱ͖Δ
Dilated causal convolution • 44100ͷೖྗ16ͷDilated causal convolution ͰΈΔ͜ͱ͕Մೳ • WavenetͰɺ࠷େDilation=512·ͰΛॏͶ(
1- block )ɺblockΛෳੵΈॏͶΔߏΛऔ͍ͬͯ Δɻ • Λਂֶͯ͘͠शͰ͖ΔΑ͏ʹResidualNetΛར ༻
None
• http://musyoku.github.io/images/post/ 2016-09-17/dilated_conv.gif
RNNͱWavenetͷֶशͷҧ͍ • RNNֶश࣌ɺ࣌ܥྻॱʹσʔλΛೖྗ͍ͯ͘͠ඞཁ͕͋ΔͨΊɺ࣌ؒ ͕͔͔Δɻ • WavenetCNNͷΑ͏ʹɺೖྗσʔλΛ࣌ܥྻʹॲཧ͢Δඞཁ͕ͳ͘ɺ ̍ʹωοτϫʔΫʹೖྗ͢ΔͨΊɺֶश͕ૣ͍ • αϯϓϧʹ͍ͭͯɺ࣌ܥྻॱʹֶश͢Δඞཁ͕ͳ͍ Wavenet
RNN
Wavenetͷߏ filter gate x: input k: layer
Conditional Wavenet • Conditional Pixel CNN ͱಉ༷ɺWavenetʹҙͷύϥϝʔλhಋೖ͢Δ ͜ͱͰɺWavenetΛύϥϝʔλͰૢ࡞ • Global
conditions: WavenetʹൃऀͷಛΛֶशͤ͞Δ ύϥϝʔλhʹΑͬͯൃશମͷதͰͷൃऀͷಛΛ࠶ݱͰ͖Δ ex: ࠃޠ͕ҟͳΔൃऀͷಛ શͯͷ࣌ؒεςοϓͰ࡞༻͢Δ߲
Conditional Wavenet • Local conditions: Wavenetʹݴ༿ͷಛΛֶशͤ͞Δ ݸʑͷ࣌ؒεςοϓͰ࡞༻͢Δ߲ ൃͷݴޠతಛΛύϥϝʔλͱͯ͠ೖྗͰ͖Δ ex: ୯ޠͷͭͳ͕ΓʹΑͬͯൃ͞Εͳ͍จࣈͳͲʁ
ੜ݁ՌσϞ https://deepmind.com/blog/wavenet-generative- model-raw-audio/
࣮ݧ݁Ռ • GoogleͷTTSσʔληοτΛར༻ֶͯ͠श • ैདྷख๏ʹൺͯߴ͍ਫ਼Λୡ
·ͱΊ • WavenetԻ߹ͷʹCNNͷख๏Λಋ ೖ͠ɺߴ͍߹ਫ਼Λୡͨ͠ • Dilated convolutionʹΑͬͯɺRNNͷΑ͏ʹ࣌ ܥྻσʔλʹద༻Ͱ͖ΔՄೳੑΛࣔͨ͠ɻ • Ի͚ͩͰͳ͘ɺԻָͷ߹ͳͲԠ༻ൣғ
͍
ࢀߟ • https://arxiv.org/abs/1609.03499 • ݪஶPDF • https://deepmind.com/blog/wavenet-generative-model-raw-audio/ • σϞ݁ՌͳͲ •
http://musyoku.github.io/2016/09/18/wavenet-a-generative-model-for-raw- audio/ • Chainer࣮Dilationͷ෦͕Θ͔Γ͍͢ • https://www.slideshare.net/DeepLearningJP2016/dlwavenet-a-generative- model-for-raw-audio