$30 off During Our Annual Pro Sale. View Details »
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
word2vecを利用した埋め込み分析とSWEMを用いた比較実験
Search
Takanobu Nozawa
February 27, 2021
Programming
0
2.4k
word2vecを利用した埋め込み分析とSWEMを用いた比較実験
atmaCup#9 オンサイトデータコンペ振り返り回で発表した資料です。
word2vecを利用した埋め込み分析とSWEMを用いた比較実験について述べています。
Takanobu Nozawa
February 27, 2021
Tweet
Share
More Decks by Takanobu Nozawa
See All by Takanobu Nozawa
低コストで実現する社内文書RAG機能を搭載したAIチャットボット開発
takapy
4
4.9k
コミュニティサービスに「あなたへ」フィードを リリースするまでの試行錯誤
takapy
1
1.6k
NLPを活用したオンボーディング改善とコールドスタート問題への対策
takapy
4
5.6k
自然言語可視化ライブラリ 「nlplot」のご紹介
takapy
3
4.3k
コミュニティサービスにおけるレコメンデーションの変遷とMLパイプラインについて
takapy
2
7.1k
SageMaker StudioとStep Functionsを用いてMLOpsへの一歩を踏み出そう
takapy
0
8.5k
GoogleColabとVSCodeを用いた分析環境運用Tips
takapy
15
14k
トピックモデルを活用したレコメンデーションの実装
takapy
1
6.6k
Streamlitとnlplotを使って自然言語を分析してみた
takapy
4
15k
Other Decks in Programming
See All in Programming
CSC305 Lecture 15
javiergs
PRO
0
250
AIと協働し、イベントソーシングとアクターモデルで作る後悔しないアーキテクチャ Regret-Free Architecture with AI, Event Sourcing, and Actors
tomohisa
5
18k
Rediscover the Console - SymfonyCon Amsterdam 2025
chalasr
2
140
React Native New Architecture 移行実践報告
taminif
1
130
ID管理機能開発の裏側 高速にSaaS連携を実現したチームのAI活用編
atzzcokek
0
190
『実践MLOps』から学ぶ DevOps for ML
nsakki55
2
550
俺流レスポンシブコーディング 2025
tak_dcxi
13
7.8k
AIコーディングエージェント(Manus)
kondai24
0
120
TypeScriptで設計する 堅牢さとUXを両立した非同期ワークフローの実現
moeka__c
6
2.9k
バックエンドエンジニアによる Amebaブログ K8s 基盤への CronJobの導入・運用経験
sunabig
0
140
Full-Cycle Reactivity in Angular: SignalStore mit Signal Forms und Resources
manfredsteyer
PRO
0
180
20 years of Symfony, what's next?
fabpot
2
310
Featured
See All Featured
Designing Dashboards & Data Visualisations in Web Apps
destraynor
231
54k
Visualizing Your Data: Incorporating Mongo into Loggly Infrastructure
mongodb
48
9.8k
It's Worth the Effort
3n
187
29k
Design and Strategy: How to Deal with People Who Don’t "Get" Design
morganepeng
132
19k
Imperfection Machines: The Place of Print at Facebook
scottboms
269
13k
Responsive Adventures: Dirty Tricks From The Dark Corners of Front-End
smashingmag
253
22k
Bash Introduction
62gerente
615
210k
Why You Should Never Use an ORM
jnunemaker
PRO
60
9.6k
Balancing Empowerment & Direction
lara
5
780
GraphQLとの向き合い方2022年版
quramy
50
14k
Building an army of robots
kneath
306
46k
Exploring the Power of Turbo Streams & Action Cable | RailsConf2023
kevinliebholz
36
6.2k
Transcript
word2vecΛར༻ͨ͠ຒΊࠐΈੳͱ SWEMΛ༻͍ͨൺֱ࣮ݧ Takanobu Nozawa 2021.02.18 atmaCup#9 ΦϯαΠτσʔλίϯϖৼΓฦΓճ
ࣗݾհ XPSEWFDͱ XPSEWFDΛJUFNʹԠ༻ 48&.Λ༻͍ͯൺֱ࣮ݧ ·ͱΊ ΞδΣϯμ
ࣗݾհ
໊લɿᖒরʢ/P[BXB5BLBOPCVʣ ॴଐɿίωώτגࣜձࣾ ɹɹɿ!UBLBQZ w ػցֶशʢ/-1ɺਪનγεςϜʣΛϝΠϯʹΓͭͭ"84ͱٔΕ͍ͯ·͢ w σʔλੳίϯϖͨ͠ΓɺϒϩάʢIUUQTXXXUBLBQZXPSLʣॻ͍ͨΓɺɹɹɹɹɹ ٿͨ͠Γɺϥʔϝϯ৯ͨΓ͍ͯ͠·͢ w ࠷ۙϙουΩϟετ🎙
͡Ί·ͨ͠ˠ!HFG@GNʢIUUQTUXJUUFSDPNHFG@GNʣ ࣗݾհ
ࠓճͷBUNB$VQҐͰͨ͠ʢਫ਼ਐ͠·͢ʣ ࣗݾհ
XPSEWFDͱ
˞IUUQTBSYJWPSHBCT XPSEWFDͱ w ʹ(PPHMFͷݚڀऀ͕ൃදͨ͠ख๏ʢ˞ʣ w ಛఆͷ୯ޠͷۙ͘ʹ͋Δ୯ޠ܈Λ༧ଌͰ͖ΔΑ͏ʹ χϡʔϥϧωοτΛֶशͤͯ͞ɺ୯ޠͷࢄදݱΛऔಘͰ͖Δ w ʮ,JOH.BO 8PNBO2VFFOʯ
จ͔ΒҾ༻ʢ˞ʣ
XPSEWFDͱ $#08ͱTLJQHSBNͷͭͷϞσϧ͕͋Δ ɹྫɿZPVTBZHPPECZFBOE*TBZIFMMP ࢀߟɿIUUQTXXXUBLBQZXPSLFOUSZ
XPSEWFDͱ ࠓճ༻͍ͨͷTLJQHSBN ʢଟ͘ͷ߹ɺ୯ޠͷࢄදݱͱ͍͏ʹ͓͍ ͯɺTLJQHSBNͷํ͕ྑ͍݁Ռ͕ಘΒΕΔ͜ ͱ͕ଟ͍ʣ ࢀߟɿIUUQTXXXUBLBQZXPSLFOUSZ
XPSEWFDͱ HFOTJNΛ༻͍Δͱൺֱత༰қʹ࣮Մೳ ʢBUNB$VQͷ%JTDVTTJPOʹ࣮ίʔυ͋͛ͯ·͢☺ ʣ
XPSEWFDΛJUFNʹԠ༻
XPSEWFDΛJUFNʹԠ༻ w εʔύʔجຊతʹಋઢ͕ઃܭ͞Ε͍ͯΔ࣌ܥྻ ੨Ռˠڕˠˠೕˠ͓՛ࢠˠࡊˠύϯˠҿྉʜ w ʢܦݧతʹʣεʔύʔߦͬͨΒجຊతʹಉ͡Α͏ͳͷΛങ͏ʹ ͋Δ w ճͷങ͍ϩάΛͭͷTFOUFODFͱΈͳͤɺͦΕͳΓͷࢄදݱ ͕ܭࢉͰ͖ΔͷͰʁͦΕͰϢʔβʔͷຒΊࠐΈΛܭࢉ͢Ε্ख͘
͍͘ͷͰʁͱ͍͏͜ͱͰ࣮ݧͨ͠
σʔλͷ࡞Γํ
σʔλͷ࡞Γํ w TQFOE@UJNFͷσʔλΛҙਤతʹʮϨδΧʔτىಈʯ ʹͯ͠ܭࢉʹؚΊͨ
σʔλͷ࡞Γํ w TFTTJPOΛTFOUFODFͱΈͳͯ͠DPSQVTΛੜ DPSQVT
JUFNWFDͷֶश݁Ռ
JUFNWFDͷֶश݁Ռ w ͍͔ͭ͘ͷJUFNͰ͍ۙJUFNΛදࣔͯ͠ࢄදݱΛఆੑత ʹ֬ೝ
JUFNWFDͷֶश݁Ռ w 6."1Ͱ̎࣍ݩѹॖͯ֬͠ೝ ʢBEKVTU5FYUͱ͍͏ϥΠϒϥϦΛ͏ͱɺϥϕϧ͕ॏͳΒͳ͍Α͏ʹϓϩοτͰ͖·͢☺ ʣ
JUFNWFDͷֶश݁Ռ w 6."1Ͱ̎࣍ݩѹॖͯ֬͠ೝ ʢBEKVTU5FYUͱ͍͏ϥΠϒϥϦΛ͏ͱɺϥϕϧ͕ॏͳΒͳ͍Α͏ʹϓϩοτͰ͖·͢☺ ʣ ྑͦ͞͏☺
JUFNͷࢄදݱΛಛྔԽ͢Δ
JUFNͷࢄදݱΛಛྔԽ͢Δ w ֤JUFNͷࢄදݱఆੑతʹ֬ೝͯͦ͠ΕͳΓͷ͕ܭࢉ͞Ε͍ͯΔ ͜ͱ͕֬ೝͰ͖ͨ w ͜ΕΛֶशʹ͑Δܗʹམͱ͠ࠐΈ͍ͨ ˠࠓճ48&.ͱ͍͏ख๏ͰϢʔβʔͷຒΊࠐΈϕΫτϧΛܭࢉ͢Δ
48&.ͱʁ w 4JNQMF8PSE&NCFEEJOHCBTFE.FUIPET w ୯ޠຒΊࠐΈͷΈΛར༻ͯ͠จষຒΊࠐΈΛܭࢉ͢Δํ๏ʢ˞ʣ w จͰԼهͭͷख๏͕ఏҊ͞Ε͍ͯΔ 㾎 48&.BWFSɿ୯ޠͷࢄදݱʹରͯ͠BWFSBHFQPPMJOH͢Δʢίϯϖظؒத࣌ؒͳ͔ ͬͨͷͰ͜Ε͚ͩΛ࣮ݧʣ
㾎 48&.NBYɿ୯ޠͷࢄදݱʹରͯ͠NBYQPPMJOH͢Δ 㾎 48&.DPODBUɿ48&.BWFSͱ48&.NBYͷ݁ՌΛ݁߹͢Δ 㾎 48&.IJFSɿOHSBNͷΑ͏ʹݻఆͷΟϯυͰBWFSBHFQPPMJOHͨ݁͠Ռʹରͯ͠ NBYQPPMJOH͢Δ ˞ɿIUUQTBSYJWPSHBCTW
48&.Ͱݕূ
48&.Ͱݕূ w ༻ͨ͠ಛྔ " Ϣʔβʔͷଐੑใʢྸɾੑผʣ # ങ͍ͷ࣌ؒใʢ݄ɾ࣌ɾ༵ͳͲʣ $ JUFNͷࢄදݱ͔Βܭࢉͨ͠ϢʔβʔຒΊࠐΈϕΫτϧʢ48&.ʣ ˞UFTUʹ͚ͩଘࡏ͢ΔϢʔβʔྸͷฏۉϕΫτϧͰิ
w ͔ͤͬ͘ͳͷͰɺԼهछྨͷಛྔͰൺֱ࣮ݧΛ࣮ࢪ ‣ "#͚ͩͷಛྔʢϕʔεϥΠϯʣ ‣ "#$ͷಛྔʢ$લड़ͨ͠छྨʣ ‣ Ϟσϧ-JHIU(#.GPME 48&.ͷ࣮ίʔυαϯϓϧ(JUIVCϦϙδτϦʹ͋͛·ͨ͠ˠIUUQTHJUIVCDPNUBLBQZHFFL@CMPHCMPCNBTUFSOMQTXFNQZ
ݕূ݁Ռ
ݕূ݁Ռ ࣮ݧ Local Public Private ϕʔεϥΠϯʢ24 featuresʣ 0.6037 0.5652 0.5802
SWEM-averʢ74 featuresʣ 0.8057 0.7476 0.7461 SWEM-maxʢ74 featuresʣ 0.7127 0.6599 0.6633 SWEM-concatʢ124 featuresʣ 0.8057 0.7435 0.7424 SWEM-hierʢ74 featuresʣ 0.8092 0.7484 0.7483
·ͱΊ
·ͱΊ w XPSEWFDΛ༻͍֤ͯJUFNͷࢄදݱΛܭࢉ͠ɺ͔ͦ͜Β48&.Ͱ ϢʔβʔͷຒΊࠐΈϕΫτϧΛܭࢉͯ͠Έͨ w ൺֱݕূ͢ΔͱɺຊλεΫͰ48&.IJFS͕Ұ൪ྑ͍ਫ਼ͩͬͨ w ࠓճϢʔβʔใΛͲ͏ͬͯಛྔʹམͱ͠ࠐΉ͔͕ͭॏཁͳ ϙΠϯτͩͬͨ48&.Ͱࢉग़ͨ͠ϢʔβʔͷຒΊࠐΈϕΫτϧ ͦͦ͜͜༗༻ͳಛྔʹͳΔ͜ͱ͕͔ͬͨ
w ӡӦͷօ༷ɺָ͍͠ίϯϖΛ͋Γ͕ͱ͏͍͟͝·ͨ͠ʂ😆🎉
࠷ޙʹ
.-ΤϯδχΞઈࢍืूதͰ͢ʂ🧑💻 ɾϥΠϑΠϕϯτ ϥΠϑελΠϧͷ՝ղܾΛ͢ΔαʔϏεʹڵຯ͕͋Δํ ɾػցֶशͷࣾձ࣮ ϓϩμΫτ։ൃʹڵຯͷ͋Δํ %.PSͦ͘ΊΜ܅ܦ༝PS8BOUFEMZܦ༝ͳͲ͝࿈བྷ͓͍ͪͯ͠·͢ʂ ΧδϡΞϧ໘ஊͰ͑ΒΕΔൣғͰͳΜͰ͑·͢ʂʢಛʹ४උ͍Γ·ͤΜʣ 5XJUUFSˠIUUQTUXJUUFSDPNUBLBQZ 8F`SF)JSJOH
͓ΘΓ ͝ਗ਼ௌ͋Γ͕ͱ͏͍͟͝·ͨ͠ʂ