Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
tech boost_deeplearning
Search
Sponsored
·
SiteGround - Reliable hosting with speed, security, and support you can count on.
→
Takehiro Yamaguchi
February 03, 2019
Technology
0
110
tech boost_deeplearning
tech boost_deeplearning
Takehiro Yamaguchi
February 03, 2019
Tweet
Share
More Decks by Takehiro Yamaguchi
See All by Takehiro Yamaguchi
【 tech boost】AI/DSエキスパート(ニューラルネットワーク)
takexhero
0
120
開発業務について
takexhero
0
610
セキュリティについて
takexhero
0
450
問題解決力について
takexhero
0
590
データベースについて
takexhero
0
1.3k
ネットワークについて
takexhero
0
620
オブジェクト指向について
takexhero
0
1.4k
Other Decks in Technology
See All in Technology
CDKで始めるTypeScript開発のススメ
tsukuboshi
1
340
Frontier Agents (Kiro autonomous agent / AWS Security Agent / AWS DevOps Agent) の紹介
msysh
3
150
Meshy Proプラン課金した
henjin0
0
250
ファインディの横断SREがTakumi byGMOと取り組む、セキュリティと開発スピードの両立
rvirus0817
1
1.2k
Stately
mu7889yoon
1
110
システムのアラート調査をサポートするAI Agentの紹介/Introduction to an AI Agent for System Alert Investigation
taddy_919
2
2k
生成AIを活用した音声文字起こしシステムの2つの構築パターンについて
miu_crescent
PRO
1
130
We Built for Predictability; The Workloads Didn’t Care
stahnma
0
130
予期せぬコストの急増を障害のように扱う――「コスト版ポストモーテム」の導入とその後の改善
muziyoshiz
1
1.7k
ClickHouseはどのように大規模データを活用したAIエージェントを全社展開しているのか
mikimatsumoto
0
200
2026年、サーバーレスの現在地 -「制約と戦う技術」から「当たり前の実行基盤」へ- /serverless2026
slsops
2
220
プロダクト成長を支える開発基盤とスケールに伴う課題
yuu26
4
1.3k
Featured
See All Featured
JAMstack: Web Apps at Ludicrous Speed - All Things Open 2022
reverentgeek
1
320
Save Time (by Creating Custom Rails Generators)
garrettdimon
PRO
32
2.1k
The MySQL Ecosystem @ GitHub 2015
samlambert
251
13k
[RailsConf 2023] Rails as a piece of cake
palkan
59
6.3k
Dominate Local Search Results - an insider guide to GBP, reviews, and Local SEO
greggifford
PRO
0
77
The agentic SEO stack - context over prompts
schlessera
0
630
SEO Brein meetup: CTRL+C is not how to scale international SEO
lindahogenes
0
2.3k
How to Ace a Technical Interview
jacobian
281
24k
Cheating the UX When There Is Nothing More to Optimize - PixelPioneers
stephaniewalter
287
14k
Getting science done with accelerated Python computing platforms
jacobtomlinson
2
110
The Psychology of Web Performance [Beyond Tellerrand 2023]
tammyeverts
49
3.3k
The Web Performance Landscape in 2024 [PerfNow 2024]
tammyeverts
12
1k
Transcript
$POpEFOUJBM $ #SBOEJOH&OHJOFFS*OD
$ #SBOEJOH&OHJOFFS*OD tech boost AI/DS Expert 第9回講義 ディープラーニング
$ #SBOEJOH&OHJOFFS*OD ⾃⼰紹介 蛭⽥ 興明 慶應義塾⼤学⼤学院 理⼯学研究科 専⾨:時系列解析、深層学習 趣味 読書、筋トレ、スノボ
$ #SBOEJOH&OHJOFFS*OD ディープラーニング ɾޡࠩٯ๏ʹ͍ͭͯ ɾΈࠐΈχϡʔϥϧωοτϫʔΫ(CNN) ɾ࠶ؼχϡʔϥϧωοτϫʔΫ(RNN) ɾGoogle ColaboratoryΛ༻͍࣮ͨફਂֶश
$ #SBOEJOH&OHJOFFS*OD ディープラーニングとは? χϡʔϥϧωοτϫʔΫ ୈճߨٛͰઆ໌ Λ ଟ ̏Ҏ্ ʹͨ͠ͷ ଟԽ
χϡʔϥϧωοτϫʔΫ σΟʔϓϥʔχϯά σʔλΛ༩͑Δ͚ͩͰɼಛྔΛࣗಈతʹநग़͢Δ͜ͱ͕Ͱ͖Δػցֶशख๏
$ #SBOEJOH&OHJOFFS*OD ディープラーニングとは? ୈ̏࣍"*ϒʔϜͷݗҾ ग़యɿIUUQTJPUOFXTKQBSDIJWFT
$ #SBOEJOH&OHJOFFS*OD ディープラーニング ɾޡࠩٯ๏ʹ͍ͭͯ ɾΈࠐΈχϡʔϥϧωοτϫʔΫ(CNN) ɾ࠶ؼχϡʔϥϧωοτϫʔΫ(RNN) ɾGoogle ColaboratoryΛ༻͍࣮ͨફਂֶश
$ #SBOEJOH&OHJOFFS*OD 誤差逆伝播法 ҰൠతʹɼχϡʔϥϧωοτϫʔΫͰɼ ৴߸ೖྗ͔Βग़ྗͱྲྀΕΔ Z Y Y X X
$ #SBOEJOH&OHJOFFS*OD 誤差逆伝播法 ग़ྗͱ࣮ࡍͷਖ਼ղͷޡࠩΛɼ ग़ྗ͔Βೖྗͱͤ͞Δ Z Y Y X X
ग़ྗʔਖ਼ղ ग़ྗͷޡࠩ
$ #SBOEJOH&OHJOFFS*OD 誤差逆伝播法がなぜ必要なのか? χϡʔϥϧωοτϫʔΫͷֶशͰɼ ʮޯ߱Լ๏ʯΛ༻͍Δ ୈճߨٛ
$ #SBOEJOH&OHJOFFS*OD 勾配降下法 ޡࠩؔ& ॏΈύϥϝʔλX ֤ͷޡࠩؔͷ͖ ޯͱٯ͖ʹύϥϝʔλΛௐ͍ͯ͘͠ ඍ͕ʹͳΔ·Ͱ܁Γฦ͢ X X
X ޡࠩؔͷ͖ ֶश େ͖͘͢ΔͱҰճͷֶशͰͷ ॏΈͷมԽ͕େ͖͘ͳΔ
$ #SBOEJOH&OHJOFFS*OD 勾配降下法 ࣍ͷΑ͏ͳೋྨχϡʔϥϧωοτϫʔΫʹޯ߱Լ๏Λద༻͢Δ ೖྗϢχοτ̑ɼதؒϢχοτ̏ͷ߹ ޡࠩؔ & ਖ਼ղσʔλ
$ #SBOEJOH&OHJOFFS*OD 勾配降下法 ࣍ͷΑ͏ͳೋྨχϡʔϥϧωοτϫʔΫʹޯ߱Լ๏Λద༻͢Δ ೖྗϢχοτ̑ɼதؒϢχοτ̏ͷ߹ & ਖ਼ղσʔλ ޡࠩؔ&࣍ͷࣜͰදͤΔ ޡࠩؔ
$ #SBOEJOH&OHJOFFS*OD 勾配降下法 ޡࠩؔ&࣍ͷࣜͰදͤΔ ͜ͷχϡʔϥϧωοτϫʔΫʹ͓͍ͯɼॏΈύϥϝʔλݸଘࡏ͢Δ ७ਮʹޯ߱Լ๏Λద༻͢ΔͱɼճඍΛ͢Δඞཁ͕͋Δ ͜ͷܭࢉΛ௨Γߦ͏ඞཁ͕͋Δ
$ #SBOEJOH&OHJOFFS*OD 勾配降下法 ޡࠩؔ&ͷɹɹͷޯɹɹɹΛٻΊΔ & ޡࠩؔ ਖ਼ղσʔλ
$ #SBOEJOH&OHJOFFS*OD Y Y Y X X X G V
ೖྗͷ ૯ V ग़ྗ G V VXY XY XY GΛ࡞༻ͤ͞Δ ࣮ࡍʹɼ֤ೖྗʹ׆ੑԽ͕ؔ࡞༻͞Ε͍ͯΔ ׆ੑԽؔ ̔ষͰઆ໌
$ #SBOEJOH&OHJOFFS*OD [ G [ Ұఆͷ ͖͍͠ G [
׆ੑԽؔ ̔ষͰઆ໌
$ #SBOEJOH&OHJOFFS*OD 勾配降下法 ޡࠩؔ&ͷɹɹͷޯΛٻΊΔ & ޡࠩؔ ਖ਼ղσʔλ ͚ͩͰͳ͘ʹΑΔӨڹΛߟ͑Δඞཁ͕͋Γɼ ܭࢉ͕ඇৗʹࡶʹͳΔ େͳ߹ؔͷඍ͕ඞཁ
$ #SBOEJOH&OHJOFFS*OD 誤差逆伝播法 Z Y Y X X & ޡࠩؔ
[ [XY XY ৽ͨͳه߸ɹɹΛಋೖ͢Δ
$ #SBOEJOH&OHJOFFS*OD 誤差逆伝播法を導⼊するメリット & ޡࠩؔ ਖ਼ղσʔλ ޡࠩؔ&ͷޯΛผͳه߸Ͱஔ͖͑Δ͜ͱͰɼ ඍܭࢉճΛݮΒ͢͜ͱ͕Ͱ͖Δ
$ #SBOEJOH&OHJOFFS*OD ドロップアウト:ディープラーニングの学習上の⼯夫 աֶशΛ͙ͨΊʹɼ χϡʔϥϧωοτϫʔΫͷ݁߹Λ͍͔ͭ͘औΓআֶ͍ͯशͤ͞Δํ๏
$ #SBOEJOH&OHJOFFS*OD ディープラーニング ɾޡࠩٯ๏ʹ͍ͭͯ ɾΈࠐΈχϡʔϥϧωοτϫʔΫ(CNN) ɾ࠶ؼχϡʔϥϧωοτϫʔΫ ɾGoogle ColaboratoryΛ༻͍࣮ͨફਂֶश
$ #SBOEJOH&OHJOFFS*OD ΈࠐΈχϡʔϥϧωοτϫʔΫͱʁ ʮΈࠐΈʯͱʮϓʔϦϯάʯͷ ֊తΈ߹ΘͤͰߏங͞ΕΔ ը૾ೝࣝʹಛԽͨ͠σΟʔϓϥʔχϯάख๏
$ #SBOEJOH&OHJOFFS*OD
ೖྗ ΈࠐΈ ΈࠐΈ ϓʔϦϯά ϓʔϦϯά શ݁߹ ग़ྗ ΈࠐΈχϡʔϥϧωοτϫʔΫશମ૾
$ #SBOEJOH&OHJOFFS*OD ΈࠐΈ ը૾ͷಛΛநग़͢ΔׂΛ࣋ͭ खॻ͖ࣈͷ߹ ը૾ͷύλʔϯΛநग़
$ #SBOEJOH&OHJOFFS*OD ̎ ̏ ̌ ̍ ̍ ̌ ̏ ̎
̏ ̍ ̎ ̌ ̌ ̍ ̎ ̏ ̎ ̏ ̌ ̍ ̍ ̌ ̏ ̎ ̏ ̍ ̎ ̌ ̌ ̍ ̎ ̏ ̐ ̒ ̐ ̑ ̍ ̌ ̌ ̌ ̍ ̌ ̌ ̌ ̍ ೖྗσʔλ Χʔωϧ ϑΟϧλ ಛϚοϓ ̍ ̌ ̌ ̌ ̍ ̌ ̌ ̌ ̍ ̐ ̒ ̐ ̑ ΈࠐΈ
$ #SBOEJOH&OHJOFFS*OD ೖྗσʔλ ಛϚοϓ ΈࠐΈ ը૾ͷࣼΊ ͕ɼͲͷҐஔʹଘࡏ͢Δ͔Λ ͍ࣔͯ͠Δ ̎ ̏
̌ ̍ ̍ ̌ ̏ ̎ ̏ ̍ ̎ ̌ ̌ ̍ ̎ ̏ ̐ ̒ ̐ ̑ ೖྗσʔλͷӈ্ʹ ύλʔϯ͕ଘࡏ ӈ্ͷ͕େ͖͘ͳΔ ̍ ̌ ̌ ̌ ̍ ̌ ̌ ̌ ̍ ϑΟϧλ ͷ࡞༻ͷҙຯ
$ #SBOEJOH&OHJOFFS*OD ը૾ͷಛͷҐஔීวੑΛอূ͢Δ ಉ͡ಛͱͯ͠ೝࣝͤ͞Δ͜ͱ͕త ϓʔϦϯά
$ #SBOEJOH&OHJOFFS*OD ը૾ͷಛͷҐஔීวੑΛอূ͢Δ ̎ ̏ ̌
̍ ̌ ̎ ̏ ̍ ̎ ̌ ̌ ̍ ̍ ̏ ̎ ̌ ̏ ̎ ̌ ̌ ̍ ̏ ̌ ϓʔϦϯά
$ #SBOEJOH&OHJOFFS*OD
ΈࠐΈχϡʔϥϧωοτϫʔΫશମ૾ ʮΈࠐΈʯͱʮϓʔϦϯάʯͷ֊తΈ߹ΘͤʹΑΔಛநग़
$ #SBOEJOH&OHJOFFS*OD ディープラーニング ɾޡࠩٯ๏ʹ͍ͭͯ ɾΈࠐΈχϡʔϥϧωοτϫʔΫ(CNN) ɾ࠶ؼχϡʔϥϧωοτϫʔΫ(RNN) ɾGoogle ColaboratoryΛ༻͍࣮ͨફਂֶश
$ #SBOEJOH&OHJOFFS*OD ࠶ؼχϡʔϥϧωοτϫʔΫ(RNN)ͱʁ աڈͷೖྗΛݱࡏͷग़ྗʹөͤ͞ΔΈΛ࣋ͭ ࣗવݴޠॲཧɼ࣌ܥྻॲཧͳͲͷ ܥྻσʔλʹಛԽͨ͠σΟʔϓϥʔχϯάख๏
$ #SBOEJOH&OHJOFFS*OD ࠶ؼχϡʔϥϧωοτϫʔΫ(RNN)ͱʁ தؒͷग़ྗΛࣗΒͷೖྗʹ͢ߏΛ࣋ͭ ೖྗ தؒ ग़ྗ 8 த͕ؒ ࣗࣗͷ
ؼؐ࿏ΛΛ࣋ͭ
$ #SBOEJOH&OHJOFFS*OD ࠶ؼχϡʔϥϧωοτϫʔΫ(RNN)ͷ࣌ؒల։ 8 U U U ɾɾɾ 8
8 աڈͷॏΈͷཤྺ͕ݱࡏͷग़ྗʹӨڹΛ༩͍͑ͯΔ
$ #SBOEJOH&OHJOFFS*OD ディープラーニング まとめ ɾޡࠩٯ๏ʹ͍ͭͯ ɾΈࠐΈχϡʔϥϧωοτϫʔΫ(CNN) ɾ࠶ؼχϡʔϥϧωοτϫʔΫ(RNN)
$ #SBOEJOH&OHJOFFS*OD ・ޡࠩٯ๏ʹ͍ͭͯ ग़ྗͱ࣮ࡍͷਖ਼ղͱͷޡࠩΛɼ ग़ྗ͔Βೖྗͱͤ͞Δֶशख๏ Z Y Y X X
ग़ྗʔਖ਼ղ ग़ྗͷޡࠩ
$ #SBOEJOH&OHJOFFS*OD 誤差逆伝播法 Z Y Y X X & ޡࠩؔ
[ [XY XY ৽ͨͳه߸ɹɹΛಋೖ͢Δ͜ͱͰɼ ඍճΛେ෯ʹݮΒ͢͜ͱ͕Մೳ
$ #SBOEJOH&OHJOFFS*OD ʮΈࠐΈʯͱʮϓʔϦϯάʯͷ ֊తΈ߹ΘͤͰߏங͞ΕΔ ը૾ೝࣝʹಛԽͨ͠σΟʔϓϥʔχϯάख๏ ʮΈࠐΈʯɿը૾ͷಛΛநग़͢Δ ʮϓʔϦϯάʯɿಛͷҐஔීวੑΛ֬อ͢Δ 畳み込みニューラルネットワークとは?
$ #SBOEJOH&OHJOFFS*OD
ೖྗ ΈࠐΈ ΈࠐΈ ϓʔϦϯά ϓʔϦϯά શ݁߹ ग़ྗ ΈࠐΈχϡʔϥϧωοτϫʔΫશମ૾
$ #SBOEJOH&OHJOFFS*OD ・再帰ニューラルネットワーク(RNN) աڈͷೖྗΛݱࡏͷग़ྗʹөͤ͞ΔΈΛ࣋ͭ ࣗવݴޠॲཧɼ࣌ܥྻॲཧͳͲͷ ܥྻσʔλʹಛԽͨ͠σΟʔϓϥʔχϯάख๏
$ #SBOEJOH&OHJOFFS*OD ࠶ؼχϡʔϥϧωοτϫʔΫ(RNN)ͷ࣌ؒల։ 8 U U U ɾɾɾ 8
8 աڈͷॏΈͷཤྺ͕ݱࡏͷग़ྗʹӨڹΛ༩͍͑ͯΔ
$ #SBOEJOH&OHJOFFS*OD ディープラーニング ɾޡࠩٯ๏ʹ͍ͭͯ ɾΈࠐΈχϡʔϥϧωοτϫʔΫ(CNN) ɾ࠶ؼχϡʔϥϧωοτϫʔΫ(RNN) ɾGoogle ColaboratoryΛ༻͍࣮ͨફਂֶश
$ #SBOEJOH&OHJOFFS*OD ・Google Colaboratoryを⽤いた実践深層学 習 σΟʔϓϥʔχϯάɼେͳͷύϥϝʔλΛܭࢉ͢Δ ௨ৗͷCPUͰେͳܭࢉ͕͔͔࣌ؒͬͯ͠·͏͜ͱ͕ଟ͍ (16 (SBQIJDT1SPDFTTJOH6OJU ʹΑΔେنฒྻԋࢉॲཧʹΑΓɼ
ܭࢉ࣌ؒΛॖͤ͞Δ͜ͱ͕ଟ͍
$ #SBOEJOH&OHJOFFS*OD ・Google Colaboratoryとは? (PPHMF͕ग़͍ͯ͠Δແྉ(16ڥ શΫϥυ্Ͱ(16Λ࿈ଓ࠷େ࣌ؒ༻Մೳ
$ #SBOEJOH&OHJOFFS*OD ・Google Colaboratoryを使⽤する (PPHMF$PMBCPSBUPSZʹΞΫηεͯ͠Έ·͠ΐ͏ɽ IUUQTDPMBCSFTFBSDIHPPHMFDPNOPUFCPPLT XFMDPNFJQZOC IMKB
$ #SBOEJOH&OHJOFFS*OD 次のような画⾯に移ります.
$ #SBOEJOH&OHJOFFS*OD 左上の「ファイル」をクリックします. ΫϦοΫ
$ #SBOEJOH&OHJOFFS*OD 「Python 3 の新しいノートブック」を選択 ΫϦοΫ
$ #SBOEJOH&OHJOFFS*OD ファイルが開くので,わかりやすい名前に変更 ϑΝΠϧ໊ͷมߋ
$ #SBOEJOH&OHJOFFS*OD 「ランタイムのタイプを変更」を選択 ͪ͜ΒΛબ
$ #SBOEJOH&OHJOFFS*OD 「ハードウェアアクセラレータ」を「GPU」に設定 ʮ(16ʯʹઃఆ ʮอଘʯΛΫϦοΫ
$ #SBOEJOH&OHJOFFS*OD GPUが動作しているか確認する ҎԼͷίʔυΛ࣮ߦ (16͕ಈ࡞͍ͯ͠Ε࣍ͷΑ͏ͳ݁ՌͱͳΔ (16Λೝ͍ࣝͯ͠Δ͜ͱ͕֬ೝͰ͖Δ
$ #SBOEJOH&OHJOFFS*OD 主要なディープラーニングライブラリ DIBJOFSQSFGFSSEOFUXPSLT͕։ൃ UFOTPSqPX(PPHMFʹΑͬͯ։ൃ LFSBT.*5ϥΠηϯεͷϥΠϒϥϦ ࠓճLFSBTΛ༻͍Δ
$ #SBOEJOH&OHJOFFS*OD 演習:CNNによる⼿書き⽂字認識 $//Λ༻͍ͯ ./*45 ͔Β·Ͱͷखॻ͖จࣈ σʔλΛֶशͤ͞Δ τϨʔχϯάσʔλ ςετσʔλ
$ #SBOEJOH&OHJOFFS*OD 演習:CNNによる⼿書き⽂字認識 LFSBTνϡʔτϦΞϧίʔυΛར༻͢Δ IUUQTHJUIVCDPNLFSBTUFBNLFSBTCMPCNBTUFSFYBNQMFTNOJTU@DOOQZ
$ #SBOEJOH&OHJOFFS*OD 演習:CNNによる⼿書き⽂字認識 4UFQඞཁͳϥΠϒϥϦΛಡΈࠐΉ
$ #SBOEJOH&OHJOFFS*OD 演習:CNNによる⼿書き⽂字認識 4UFQֶ̎शͷઃఆΛߦ͏ CBUDI@TJ[FҰճͷֶशͰ༻͢Δσʔλ OVN@DMBTTFTྨͷΫϥε ͔Β·ͰͷࣈΑΓɼ FQPDIT܇࿅σʔλΛֶशʹ͏ճ
$ #SBOEJOH&OHJOFFS*OD 演習:CNNによる⼿書き⽂字認識 4UFQ̏σʔλαΠζͷઃఆɼׂ αΠζΛ✖ʹ͠ɼτϨʔχϯάͱςετʹׂ
$ #SBOEJOH&OHJOFFS*OD 演習:CNNによる⼿書き⽂字認識 4UFQֶ̐शʹ༻͍Δ$//Ϟσϧͷߏங
$ #SBOEJOH&OHJOFFS*OD 演習:CNNによる⼿書き⽂字認識 4UFQ࣮̑ࡍͷֶशΛߦ͏
$ #SBOEJOH&OHJOFFS*OD 演習1:CNNによる⼿書き⽂字認識 ࣮ߦ݁Ռ
$ #SBOEJOH&OHJOFFS*OD Thank You