Lock in $30 Savings on PRO—Offer Ends Soon! ⏳
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Facebookの数学 暗算編
Search
Taku Toguchi
September 05, 2012
Technology
1
4.2k
Facebookの数学 暗算編
アプリローンチ後の数値を予測しています。
Taku Toguchi
September 05, 2012
Tweet
Share
More Decks by Taku Toguchi
See All by Taku Toguchi
IQUEにおけるFacebookアプリの開発と運用
takutoguchi
2
3.2k
Other Decks in Technology
See All in Technology
re:Invent2025 3つの Frontier Agents を紹介 / introducing-3-frontier-agents
tomoki10
0
110
新 Security HubがついにGA!仕組みや料金を深堀り #AWSreInvent #regrowth / AWS Security Hub Advanced GA
masahirokawahara
1
2k
[JAWS-UG 横浜支部 #91]DevOps Agent vs CloudWatch Investigations -比較と実践-
sh_fk2
2
260
Debugging Edge AI on Zephyr and Lessons Learned
iotengineer22
0
200
品質のための共通認識
kakehashi
PRO
3
260
Snowflakeでデータ基盤を もう一度作り直すなら / rebuilding-data-platform-with-snowflake
pei0804
6
1.5k
5分で知るMicrosoft Ignite
taiponrock
PRO
0
370
Fashion×AI「似合う」を届けるためのWEARのAI戦略
zozotech
PRO
2
510
Jakarta Agentic AI Specification - Status and Future
reza_rahman
0
100
AIの長期記憶と短期記憶の違いについてAgentCoreを例に深掘ってみた
yakumo
3
240
第4回 「メタデータ通り」 リアル開催
datayokocho
0
130
プロンプトやエージェントを自動的に作る方法
shibuiwilliam
10
7.8k
Featured
See All Featured
The Success of Rails: Ensuring Growth for the Next 100 Years
eileencodes
47
7.9k
Context Engineering - Making Every Token Count
addyosmani
9
510
What's in a price? How to price your products and services
michaelherold
246
13k
Practical Orchestrator
shlominoach
190
11k
Balancing Empowerment & Direction
lara
5
800
Optimizing for Happiness
mojombo
379
70k
Reflections from 52 weeks, 52 projects
jeffersonlam
355
21k
Testing 201, or: Great Expectations
jmmastey
46
7.8k
YesSQL, Process and Tooling at Scale
rocio
174
15k
Creating an realtime collaboration tool: Agile Flush - .NET Oxford
marcduiker
35
2.3k
Principles of Awesome APIs and How to Build Them.
keavy
127
17k
[RailsConf 2023 Opening Keynote] The Magic of Rails
eileencodes
31
9.8k
Transcript
'BDFCPPLͷֶ҉ࢉฤ ͱ͙ͪͨ͘ ΞϓϦϩʔϯνޙͷޮՌΛ༧ଌ͢Δ
࿀ਓ͕ผΕͨ %BWJE.D$BOEMFTT-FF#ZSPO *OGPSNBUJPO*T#FBVUJGVMOFU-FF#SZPODPN
0 44 88 132 176 220 1 2 3 4
5 6 7 8 9 10 11 12 13 14 σΠϦʔ Ϣʔβʔ
0 114 228 342 456 570 1 2 3 4
5 6 7 8 9 10 11 12 13 14 σΠϦʔ Ϣʔβʔ ΟʔΫϦʔ σΠϦʔϐʔΫ ΟʔΫϦʔϐʔΫ
σΠϦʔϐʔΫ 0 114 228 342 456 570 1 2 3
ɾ ʹདྷΔ ɾ͘ͱ·ͰʹདྷΔ ɾ૾ΑΓૣ͘དྷΔ
ΟʔΫϦʔϐʔΫ 0 114 228 342 456 570 6 7 8
ɾσΠϦʔϐʔΫͷޙʹདྷΔ ɾԿ͔खΛଧͨͳ͚Ε͜ͷ··
ؒܭଌ 500 583 667 750 833 917 1000 5 10
15 20 25 30
ˋϧʔϧ
ϧʔϧ 500 583 667 750 833 917 1000 5 10
15 20 25 30
Ϗʔϧˋফࣦ ΞαώϏʔϧʂ
ࣗಈंˋফࣦ τϤλʂ
εϚϗˋফࣦ J1IPOFʂ J1IPOFʂ
څ༩ɾใुˋফࣦ ͦΜͳ͊ʂʂ
500 567 633 700 767 833 900 5 10 15
ϧʔϧ ɾʙͷഒΛΩʔʹ͢Δ ɾຖʹഒͣͭԼ͕Δ ɾΩʔഒ΄ͱΜͲͷ߹ɺYY
ݕূ
ΞϓϦ"ഒ 1.00 1.10 1.20 1.30 10 15 20 25 30
ΞϓϦA ༧ଌ
ΞϓϦ"Ϣʔβʔ 500 583 667 750 833 917 1000 5 10
15 20 25 30 ΞϓϦA ༧ଌ
ݕূ
ΞϓϦ#ഒ 1.00 1.10 1.20 1.30 10 15 20 25 30
ΞϓϦB ༧ଌ
ΞϓϦ#Ϣʔβʔ 150 168 187 205 223 242 260 5 10
15 20 25 30 ΞϓϦB ༧ଌ
̎༧ଌʹର͢ΔΞϓϩʔν
ೝূμΠΞϩά
ೝূμΠΞϩά ɾແҙຯʹϝʔϧΞυϨεΛऔಘ͠ͳ͍ ɾͳͥͳΒ͞Βʹ͢Δ͔Β ɾٻΊΔݖݶͷଟ͋͞·Γؔͳ͍ QVCMJTI@TUSFBNQVCMJTI@BDUJPOT ɾը໘͕εΩοϓ ɾͦͦ͢Δ
ΞϓϦ"Ϣʔβʔ 150 168 187 205 223 242 260 5 10
15 20 25 30 ΞϓϦA ༧ଌ
·ͱΊ ɾϐʔΫૣ͘དྷΔ ɾϧʔϧ ɾແҙຯʹϝʔϧΞυϨεΛऔಘ͠ͳ͍
ྑ͍χϡʔεΛͭ
ߘʹΑΔϑΟʔυ࿐ग़ ɾഒͷΠϯϓϨογϣϯ ɾ͕๚ ɾਓߘͯ͠ਓਓ͕๚
༑ୡΛট͢Δ ɾQVTIͰΞΫγϣϯΛଅͤΔ ɾҎ্͕๚ ɾਓটͯ͠ਓਓ͕๚
0(ʹΑΔϑΟʔυ࿐ग़ ɾഒͷΠϯϓϨογϣϯ ɾ͕๚ ɾਓߘͯ͠ਓਓ͕๚
͓·͚
'BDFCPPLϖʔδͷ ߘʹରͯ͠ͷԠ ΞϓϦެ։ޙͷॳಈ 㲈
ϑΝϯͷ༑ୡ×ϑΝϯ Y
ʹ͍ͯ͠Δਓ×ϑΝϯ Z
͍͍Ͷ͞ΕΔͰ͋Ζ͏ਓ [ ʹ͍ͯ͠Δਓºʙ ˞࠷େ
͍͍Ͷ͞ΕΔͰ͋Ζ͏ਓ [ ϑΝϯͷ༑ୡ×ϑΝϯ Y ʹ͍ͯ͠Δਓ×ϑΝϯ Z º º ̎ 'BDFCPPLϖʔδͷ
ߘʹରͯ͠ͷԠ ˞͜ΕʹϑΝϯήʔτɺೝূμΠΞϩάͷΛ͔͚Δ㲈ॳಈ
ࠓͷ·ͱΊ ɾϐʔΫૣ͘དྷΔ ɾϧʔϧ ɾແҙຯʹϝʔϧΞυϨεΛऔಘ͠ͳ͍ ɾϑΟʔυʹߘͯ͠Β͓͏ ɾ0(ΞΫγϣϯΛͱͬͯΒ͓͏ ɾॳಈΛ༧ଌ͠Α͏
ϑΝϯμʔ$50 ͱ͙ͪͨ͘ /&9'. IUUQOFYGN IUUQUXJUUFSDPNUBLVUPH
ྫ֎ͷˋϧʔϧ ࢿྉݶఆ
500 567 633 700 767 833 900 5 10 15
ϧʔϧ ɾʙͷഒΛΩʔʹ͢Δ ɾຖʹഒͣͭԼ͕Δ ɾΩʔഒ΄ͱΜͲͷ߹ɺYY ˞Ωʔഒ͕ഒΛ͍͑ͯͨ߹ ʙͷ͔ΒҾ͘ ഒʹɹഒʹɹഒʹҾ͘
ݕূ
ΞϓϦ$ഒ 1.00 2.00 3.00 4.00 5.00 6.00 7.00 10 15
20 25 30 ΞϓϦC ༧ଌ
ΞϓϦ$Ϣʔβʔ 150 275 400 525 650 775 900 5 10
15 20 25 30 ΞϓϦC ༧ଌ