Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
生成AI活用のROI、どう測る? DMM.com 開発責任者から学ぶ「AI効果検証のノウハウ」...
Search
Masato Ishigaki / 石垣雅人
August 18, 2025
Technology
5
390
生成AI活用のROI、どう測る? DMM.com 開発責任者から学ぶ「AI効果検証のノウハウ」 / ROI of AI
TECH PLAY「生成AI活用のROI、どう測る? DMM.com 開発責任者から学ぶ「AI効果検証のノウハウ」」の登壇資料
https://techplay.jp/event/984918
Masato Ishigaki / 石垣雅人
August 18, 2025
Tweet
Share
More Decks by Masato Ishigaki / 石垣雅人
See All by Masato Ishigaki / 石垣雅人
プロダクトマネージャーが押さえておくべき、ソフトウェア資産とAIエージェント投資効果 / pmconf2025
i35_267
2
1.3k
大規模組織にAIエージェントを迅速に導入するためのセキュリティの勘所 / AI agents for large-scale organizations
i35_267
8
1.2k
無意味な開発生産性の議論から抜け出すための予兆検知とお金とAI
i35_267
9
23k
Clineを含めたAIエージェントを 大規模組織に導入し、投資対効果を考える / Introducing AI agents into your organization
i35_267
6
2.3k
開発フェーズだけではない AI導入はどのように進めていくべきか / How should we proceed with AI adoption beyond the development stage?
i35_267
4
370
【Forkwell】「正しく」失敗できるチームを作る──現場のリーダーのための恐怖と不安を乗り越える技術 - FL#83 / A team that can fail correctly by forkwell
i35_267
6
730
【Findy】「正しく」失敗できる チームの作り方 〜リアルな事例から紐解く失敗を恐れない組織とは〜 / A team that can fail correctly by findy
i35_267
9
2.1k
技術負債の「予兆検知」と「状況異変」のススメ / Technology Dept
i35_267
2
1.6k
技術負債による事業の失敗はなぜ起こるのか / Why do business failures due to technical debt occur?
i35_267
5
2.8k
Other Decks in Technology
See All in Technology
サイボウズ 開発本部採用ピッチ / Cybozu Engineer Recruit
cybozuinsideout
PRO
10
72k
Claude Codeベストプラクティスまとめ
minorun365
52
29k
人はいかにして 確率的な挙動を 受け入れていくのか
vaaaaanquish
4
3.1k
MySQLのJSON機能の活用術
ikomachi226
0
110
Amazon ElastiCacheのコスト最適化を考える/Elasticache Cost Optimization
quiver
0
270
AI開発の落とし穴 〜馬には乗ってみよAIには添うてみよ〜
sansantech
PRO
10
5.3k
ドキュメントからはじめる未来のソフトウェア
pkshadeck
4
2k
Web Intelligence and Visual Media Analytics
weblyzard
PRO
1
6.8k
「AIでできますか?」から「Agentを作ってみました」へ ~「理論上わかる」と「やってみる」の隔たりを埋める方法
applism118
11
7.5k
月間数億レコードのアクセスログ基盤を無停止・低コストでAWS移行せよ!アプリケーションエンジニアのSREチャレンジ💪
miyamu
0
110
re:Inventで出たインフラエンジニアが嬉しかったアップデート
nagisa53
4
220
Oracle Cloud Infrastructure:2026年1月度サービス・アップデート
oracle4engineer
PRO
0
190
Featured
See All Featured
Build your cross-platform service in a week with App Engine
jlugia
234
18k
How to Build an AI Search Optimization Roadmap - Criteria and Steps to Take #SEOIRL
aleyda
1
1.9k
GraphQLとの向き合い方2022年版
quramy
50
14k
Optimizing for Happiness
mojombo
379
71k
Evolving SEO for Evolving Search Engines
ryanjones
0
110
Exploring the Power of Turbo Streams & Action Cable | RailsConf2023
kevinliebholz
37
6.2k
Rails Girls Zürich Keynote
gr2m
96
14k
AI Search: Where Are We & What Can We Do About It?
aleyda
0
6.9k
ピンチをチャンスに:未来をつくるプロダクトロードマップ #pmconf2020
aki_iinuma
128
55k
HU Berlin: Industrial-Strength Natural Language Processing with spaCy and Prodigy
inesmontani
PRO
0
160
Being A Developer After 40
akosma
91
590k
Building Adaptive Systems
keathley
44
2.9k
Transcript
1 Masato Ishigaki July. 19, 2025 生成AI活用のROI、どう測る? DMM.com 開発責任者から学ぶ
「AI効果検証のノウハウ 」
2 About me 石垣 雅人 合同会社 DMM.com プラットフォーム開発本部 副本部長
/ 第1開発部 部長 / VPoE室 / アルファ室 ・連載中 : 『開発生産性の多角的視点』(CodeZine) ・連載中 : 『スモールチームが武器になる時代へ』(ProductZine) ・連載中 : 『群知能から紐解く、スケールする“組織“の作り方 』(NewsPicks) 2
None
None
https://jp.findy-team.io/blog/ai-casestudy/ai_effectiveness_verification_dmm/ 話すこと 5
6 Table of Contents - AIによって開発スタイルとスケーリングの違い - AIへの投資と人への投資によるお金の変化 - AIエージェントへの投資対効果の投資と効果の基準
- AI疲れ・レビュー負荷にどう立ち向かうか
7 Table of Contents - AIによって開発スタイルとスケーリングの違い - AIへの投資と人への投資によるお金の変化 - AIエージェントへの投資対効果の投資と効果の基準
- AI疲れ・レビュー負荷にどう立ち向かうか
AIエージェントによる開発スタイルの変化 従来 プロダクション 現在 成果物は物理的な時間と人 が同期していた ガードレール役に徹する (CodeRabbit等で短縮) プロダクション 人の物理的な時間と成果物
が非同期で出てくる これから 成果物のレビューもAIへ LLM-as-a-judge 人は問い型へ プロダクション 8
これから 人は問い型へ プロダクション 9 AIエージェントによる開発スタイルの変化 成果物のレビューもAIへ LLM-as-a-judge
人による量のスケーリングの終わり 10 人の増やして量を作る 2 pizzaで分解する アジャイル × マイクロサービス 人とのコミュニケーションパス
が膨大 人とのコミュニケーションパス を縮小 AIで代替する 1チームあたりの 規模が縮小.AIとの対話へ
11 ちなみに AIが人を代替するのではなく、 AIを使っている人がAIを使っていない人を代替する
人によるスケーリングから、AIによるスケーリング + + + 人を増やして、スケール 個の生産性を上げて、スケール 個とAIを増やして、スケール
+ Lead Time 早 スケール方法 12
人材関連費 ・給与手当 ・賞与 ・法定福利費 ・福利厚生費 ・地代家賃 ・採用費 ・販管費 / 支払い手数料
販管費/支払手数料 (ライセンス料) P/L + + + + 人にかかるお金とAIにかけるお金による変化 +700万 +700万 +700万 +700万 +700万 +20万 +20万 +700万 +700万 +20万 +20万 +20万 スケール方法 13
14 Table of Contents - AIによって開発スタイルとスケーリングの違い - AIへの投資と人への投資によるお金の変化 - AIエージェントへの投資対効果の投資と効果の基準
- AI疲れ・レビュー負荷にどう立ち向かうか
AIエージェントへの投資対効果について - 投資対効果の「投資の部分」 - AIエージェントやFindy Team+といったチームの生産性 に寄与するものコスト(人件費は除く) - 投資対効果の「効果の部分」
- 生産量・リードタイム・個々の生産性(同じAIエージェント の金額でも数値は違う) ・AIエージェント ・Findy Team+ ・その他、チーム生産性に寄与 するもの ・生産量増 ・リードタイム短縮 ・1人あたりの生産性 output input 15
投資対効果の「投資の部分」 チームごとのコスト ツールごとのコスト AIエージェントのツールは 使わないものは削る
- 「感覚的には早くなっている」をどう自分たちの行動ログとして表出化させるか - 定量データで言えば「AIに置き換え」と「AIとの協働」で難易度は違う - └ AIに置き換え → 人でやっていたものを丸々削減時間とする -
└ AI協働 → 人でやったときの予測とAI協働での実績比較やAAテストからのABテス トはできないので移動平均などで抽出して行う 投資対効果の「効果の部分」 17
生産量・リードタイム・1人あたりの生産性 - 生産量 : ノイズを取り除いた状態でのPR数などの数的推移 - リードタイム : 類推見積りでおおよそ一致した施策のリードタイム比較
- 1人あたりの生産性 : 同じAIエージェントの金額でも個々で 成果がバラバラの場合が多い。そのため、 1人1人可視化していく必要あり - SPACEなどの定性評価も組み合わせて 筋が良さそうな指標を組み合わせて生産活動の変化傾向 を 見ていく 投資対効果の「効果の部分」 18
AIへの投資対効果の観点 - スピードと品質の両方を考慮する - 品質を落として量産しても意味がない。逆に負荷がかかるだけになる - 単一プロセスの最適化ではなく、バリューストリーム全体を見る - 生産量が多くなっても、変更障害率が多くなっている等
Findy Team+, Findy AIによる比較 ある平均的な1チームの例(3ヶ月)
Findy Team+, Findy AIによる比較 指標 人間チーム Devin AI 勝者 総合⽣産量
189件 74件 ⼈間チーム 個別⽣産性 15.8件/⼈ 74件 Devin AI 継続性 不規則 111⽇中74⽇活動 Devin AI ピーク⽣産 3件/⽇ (最⼤) 9件/⽇ (最⼤) Devin AI ある平均的な1チームの例(3ヶ月) 【生産性分析】
Findy Team+, Findy AIによる比較 ある平均的な1チームの例(3ヶ月) 【品質分析】 指標 人間チーム Devin
AI 勝者 マージ率 85-90% 60.1% ⼈間チーム レビュー品質 ⾃⼰完結型 要⼈間確認 ⼈間チーム 複雑度対応 ⾼度な設計可能 定型作業のみ ⼈間チーム エラー率 10-15% 40% ⼈間チーム
Findy Team+, Findy AIによる比較 ある平均的な1チームの例(3ヶ月) 【作業内容分析】 人間チーム (189件) の作業分布
新機能開発 40% (76件) バグ修正‧改善 30% (57件) テスト実装 20% (38件) 保守‧リファクタ 10% (18件) Devin AI (74件) の作業分布 コード変換 60% (44件) ‒ Kotlin-Java テスト変換 30% (22件) 機能改善 10% (8件)
AI疲れとレビュー負荷の違い - AI疲れ - Devin/ Cursor background agentを 非同期で動かしながら手元では 同期的にAIエージェントとvibe-codingをし
ているというメンバーが増える。AIのキャッチアップ疲れもある - 使いすぎると単一時間あたりの業務密度が高くなり、人が バーンアウトするときもあるか - 以前までは、働き過ぎの部分は残業などでキャッチしてきましたが、AI時代だとそうもいかないこともあるため、 どう労務を見ていくかは思案し始めている - レビュー負荷 - AIが作ったものをどう評価し、成果物としてリリースしていくかに抵抗がある組織も多い - しかし、AIエージェントによる生産量が増えることは間違いないので、人によるレビュー限界が来る - 一部、LLM as a Judgeの試験的導入をしているチームもある
25 まとめ - AIによって開発スタイルとスケーリングの違い - AIへの投資と人への投資によるお金の変化 - AIエージェントへの投資対効果の投資と効果の基準 - 今後
: AI疲れ・レビュー負荷にどう立ち向かうか