Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
CDCデータパイプラインを止めないために / One Stream of the CDC
Search
Toshifumi Tsutsumi
June 07, 2023
Programming
0
1.4k
CDCデータパイプラインを止めないために / One Stream of the CDC
2023/06/05 データエンジニアリング合同勉強会
primeNumber Inc. / GMO Pepabo, Inc.
Toshifumi Tsutsumi
June 07, 2023
Tweet
Share
More Decks by Toshifumi Tsutsumi
See All by Toshifumi Tsutsumi
ModuleNotFoundErrorの傾向と対策:仕組みから学ぶImport / Unpacking ModuleNotFoundError
tosh2230
3
5.4k
ニアリアルタイム分析の実現に向けたChange Data Captureの導入 / Change data capture for near realtime analytics
tosh2230
3
2k
データリネージの組織導入事例と今後の戦略 / Introduction to an example of data lineage in GMO Pepabo
tosh2230
0
1k
SQLクエリ解析によるE2Eデータリネージの実現 / E2E-data-lineage
tosh2230
0
3.7k
データ抽出基盤 Yeti をつくっている話 / Yeti - Yet another Extract-Transfer Infrastructure
tosh2230
1
5k
Loggingモジュールではじめるログ出力入門 / Introduction to Python Logging
tosh2230
32
15k
データ基盤チームの設立と直近の取り組み / the-establishment-of-pepabo-data-platform-team
tosh2230
5
4.5k
Other Decks in Programming
See All in Programming
ruby.wasmで多人数リアルタイム通信ゲームを作ろう
lnit
2
270
KotlinConf 2025 現地で感じたServer-Side Kotlin
n_takehata
1
230
Julia という言語について (FP in Julia « SIDE: F ») for 関数型まつり2025
antimon2
3
980
C++20 射影変換
faithandbrave
0
530
「ElixirでIoT!!」のこれまでとこれから
takasehideki
0
370
関数型まつり2025登壇資料「関数プログラミングと再帰」
taisontsukada
2
850
「Cursor/Devin全社導入の理想と現実」のその後
saitoryc
0
160
設計やレビューに悩んでいるPHPerに贈る、クリーンなオブジェクト設計の指針たち
panda_program
6
1.4k
今ならAmazon ECSのサービス間通信をどう選ぶか / Selection of ECS Interservice Communication 2025
tkikuc
20
3.6k
Rubyでやりたい駆動開発 / Ruby driven development
chobishiba
1
420
技術同人誌をMCP Serverにしてみた
74th
1
370
GitHub Copilot and GitHub Codespaces Hands-on
ymd65536
1
120
Featured
See All Featured
Being A Developer After 40
akosma
90
590k
Fight the Zombie Pattern Library - RWD Summit 2016
marcelosomers
233
17k
The Straight Up "How To Draw Better" Workshop
denniskardys
234
140k
How STYLIGHT went responsive
nonsquared
100
5.6k
KATA
mclloyd
29
14k
Why You Should Never Use an ORM
jnunemaker
PRO
57
9.4k
A better future with KSS
kneath
239
17k
4 Signs Your Business is Dying
shpigford
184
22k
Measuring & Analyzing Core Web Vitals
bluesmoon
7
490
CSS Pre-Processors: Stylus, Less & Sass
bermonpainter
357
30k
Automating Front-end Workflow
addyosmani
1370
200k
個人開発の失敗を避けるイケてる考え方 / tips for indie hackers
panda_program
107
19k
Transcript
堤 利史 / GMO PEPABO inc. 2023.06.05 データエンジニアリング合同勉強会 1 CDC
データパイプラインを 止めないために
2 自己紹介 GMOペパボ株式会社 技術部データ基盤チーム シニアエンジニア 2020年 中途入社 堤 利史 Tsutsumi
Toshifumi • データエンジニア • Twitter : @tosh2230 • 最近そこそこ走っています(ジム派) • スバル クロストレックがついに納車!!
3 アジェンダ 1. これまでのあらすじ 2. 現在の状況と成果 データ基盤 「Bigfoot」 マスコットキャラクター Bigfootくん
キャラクターグッズあります https://suzuri.jp/zaimy/designs/13278107
1. これまでのあらすじ 4
以前のデータパイプライン 5 事業用 RDB のレコードを Google BigQuery へ日次で転送 転送手段と規模 -
Embulk によるバッチ転送 - テーブル数は数十〜数百 (事業によって異なる) - テーブルサイズは 100 GiB レベルなものも存在 https://speakerdeck.com/tosh2230/yeti-yet-another-extract-tra nsfer-infrastructure?slide=14
日次データ転送によって生じるタイムラグ 6 DWH で集計・分析が可能となるまでの時間 = 抽出時間 + 転送時間 + ロード時間
特定時点のスナップショットデータを順番に転送している 一部のデータがロードできたとしても必要なデータが揃わないと 集計・分析を開始できない ↓ サイズが大きいテーブルのデータが必要なら、その完了を待つ
Change Data Capture(CDC) とは 7 データベースで生じたデータの変更を捕捉すること 広義には、その変更内容を他のシステムやデータストアへ転送して活用する部分も含む 活用例 - データレプリケーション
- キャッシュ更新 - 全文検索エンジンのインデックス更新
Debezium Server* を選択 Debezium が提供するアプリケーション - Debezium: Kafka Connect として動作
- Debezium Server: 変更イベントをメッセージングサービスへ送信(Kafkaless) 8 出典: https://debezium.io/documentation/reference/architecture.html * 2023年6月時点で incubating state なので、将来的に仕様が変更となる可能性があります
9 CDCデータパイプライン 構成図 VPC Private subnet VPC Private subnet RDS
Replica RDS Primary S3 Fargate Batch ECS EC2 EFS Debezium Server Pub/Sub Merged view BigQuery Change events table BigQuery Snapshot table BigQuery Cloud Composer IN: OUT: 今回構築した範囲
AWS 10 - Debezium Server コンテナ*を ECS on EC2 で起動
- RDS for MySQL のレプリカが出力する binlog を読み込んで テーブル別につくった Cloud Pub/Sub Topic へ送信 - “変更をどこまで捕捉したか”を記録するファイルは EFS に保存 * https://github.com/debezium/container-images/tree/main/server
GCP 11 - Pub/Sub Subscription は BigQuery Subscriptions を指定して 専用テーブルに向けてストリーミングインサート
- CDC レコードと従来のスナップショットテーブルのレコードを マージしたビューを社内へ公開(詳細は次スライドで)
2 Merged view 12 つくりかた 🍳 1. CDC レコード群から、Primary key
ごとに最新のレコード状態を復元 2. 1 の Primary key を “含まない” レコードの集合をスナップショットテーブルから抽出 3. 1 と 2 を UNION ALL する Change events table BigQuery Snapshot table BigQuery Merged view BigQuery 1 PK別の最新状態 3
詳細はブログ記事をご覧ください 13 https://tech.pepabo.com/2023/04/20/cdc-for-realtime-analysis/
2. 現在の状況と成果 14
ハンドメイドマーケット minne で稼働中 15 転送対象 テーブル数 48 レコード件数 /day 650万
ハンドメイドマーケット minne で稼働中 16 転送対象 テーブル数 48 レコード件数 /day 650万
止まったら大変...
17 あやしいところに目を光らせる VPC Private subnet VPC Private subnet RDS Replica
RDS Primary S3 Fargate Batch ECS EC2 EFS Debezium Server Pub/Sub Merged view BigQuery Change events table BigQuery Snapshot table BigQuery Cloud Composer IN: OUT:
18 VPC Private subnet VPC Private subnet RDS Replica RDS
Primary S3 Fargate Batch ECS EC2 EFS Debezium Server Pub/Sub Merged view BigQuery Change events table BigQuery Snapshot table BigQuery Cloud Composer IN: OUT: RDS Connection 接続が切れたら ECS Service を自動的に再起動 CloudWatch Logs → EventBridge → Lambda あやしいところに目を光らせる
19 VPC Private subnet VPC Private subnet RDS Replica RDS
Primary S3 Fargate Batch ECS EC2 EFS Debezium Server Pub/Sub Merged view BigQuery Change events table BigQuery Snapshot table BigQuery Cloud Composer IN: OUT: ECS Service Mackerel エージェントをサイドカーコンテナとして起動 - コンテナ死活監視 - CPU 使用率 - Memory 使用率 あやしいところに目を光らせる
20 VPC Private subnet VPC Private subnet RDS Replica RDS
Primary S3 Fargate Batch ECS EC2 EFS Debezium Server Pub/Sub Merged view BigQuery Change events table BigQuery Snapshot table BigQuery Cloud Composer IN: OUT: Pub/Sub Subscription Oldest unacked message age(メッセージ滞留時間) 5分以上滞留している場合に Slack へ通知 あやしいところに目を光らせる
安定稼働による成果 21 - 日次集計処理の開始時刻を 12h 前倒し → 毎日13時 から 1時へ変更
- スナップショットテーブルの更新頻度を日次から週次へ変更 → 転送コスト削減 - 常に最新データが転送されている安心感 週次に変更した部分
22 Thank You! Thank You!