• 0 er , /11, 9p • ,2/ ,7/32 nMo e k e M , /11, 9 u M TM i • O N t Kg y lz sa https://blog.mapillary.com/update/2018/01/26/youth-citizen-engagement-school-routes-reporting.html
/ 455/9 11 ,/9/ / :/4 9 A sP ijO Srq • NP K • 7 . 3 7 C / A • A A – . 3 L .e G m _fI I b g MU C c acd 9C h ln CC 79C 3 9 A C3 9 7 • M L • C A 7 C 3C9 • : 3C – 9/2240 :43 : T – 4 : T – 4 1: T • . 7 C C9 op
/, 0 23/ 0 1 , 0 2 1 , •Road markings: increased from 6 classes to 21 classes including speed limits and direction arrows, which are essential classes for building navigation and HD maps. •Driveway: a new class that we’ve introduced to help enhance data extraction for last-mile •Barriers: increased from 6 to 11 classes. Detailed refinement of the barrier classes is the first step to enhance the perception capacity for autonomous driving under different scenarios. •Signages: the billboard class is now refined to advertisement, storefront, and general information signages. This facilitates automatic and in-depth location-aware data extraction for marketing, business, and point-of-interest analysis. •Traffic light states: dynamic properties are associated with static objects. In this case, we have refined 100K traffic light annotations with different state
,, /3 12 / 0 ( 2 0 2 9 • 3 CDo C yz p s j g • u e Waf b 1 2 2 c lnPviM DP O P z M t r M DP https://blog.mapillary.com/update/2019/02/13/announcing-capture-projects.html
,, /3 12 / 0 PD Tn • clu a Pn T R ie • y r PD T p o Ny m I A NI s • N C t Iy SV hI c l Gy g T AM n https://blog.mapillary.com/update/2019/03/12/toyota-research-institute-and-mapillary.html
,, /3 12 / 0 3 - 2 09 9CC 0 9 9 09: 9 • P tp e c a S [ uy nrNi s SWV b S R o[ S N g l m % S N SWV • % 1./ ]dh • C : E 9 % % E : C9 9CC C 9 9 C9: 9 • 9 N K M
,, /3 12 / 0 ! : 2 7 : ey Eic n • b MP [r n W • nj M EN ] [ac g • : / O V :3 7 7 ft eoMp lso https://blog.mapillary.com/update/2019/03/27/announcing-verification-projects.html