Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
[論文紹介] 物理パラメータのランダム化による耐故障ロボットのための強化学習
Search
Sponsored
·
Your Podcast. Everywhere. Effortlessly.
Share. Educate. Inspire. Entertain. You do you. We'll handle the rest.
→
tt1717
January 26, 2024
Research
0
79
[論文紹介] 物理パラメータのランダム化による耐故障ロボットのための強化学習
PDFファイルをダウンロードすると,スライド内のリンクを見ることができます.
tt1717
January 26, 2024
Tweet
Share
More Decks by tt1717
See All by tt1717
[勉強会] Decision Transformer
tt1717
0
28
[論文サーベイ] Survey on Google DeepMind’s Game AI 2
tt1717
0
35
[論文サーベイ] Survey on Google DeepMind’s Game AI
tt1717
0
21
[論文サーベイ] Survey on VLM for Video Game Quality Assurance
tt1717
0
22
[論文サーベイ] Survey on Pokemon AI 3
tt1717
0
76
[論文サーベイ] Survey on Pokemon AI 2
tt1717
0
66
[論文サーベイ] Survey on Pokemon AI
tt1717
0
100
[論文サーベイ] Survey on Minecraft AI in NeurIPS 2024
tt1717
0
120
[論文サーベイ] Survey on GPT for Games
tt1717
0
73
Other Decks in Research
See All in Research
[Devfest Incheon 2025] 모두를 위한 친절한 언어모델(LLM) 학습 가이드
beomi
2
1.4k
A History of Approximate Nearest Neighbor Search from an Applications Perspective
matsui_528
1
160
説明可能な機械学習と数理最適化
kelicht
2
940
姫路市 -都市OSの「再実装」-
hopin
0
1.6k
2025-11-21-DA-10th-satellite
yegusa
0
120
令和最新技術で伝統掲示板を再構築: HonoX で作る型安全なスレッドフロート型掲示板 / かろっく@calloc134 - Hono Conference 2025
calloc134
0
550
AI in Enterprises - Java and Open Source to the Rescue
ivargrimstad
0
1.1k
R&Dチームを起ち上げる
shibuiwilliam
1
170
2026年1月の生成AI領域の重要リリース&トピック解説
kajikent
0
430
【SIGGRAPH Asia 2025】Lo-Fi Photograph with Lo-Fi Communication
toremolo72
0
120
Earth AI: Unlocking Geospatial Insights with Foundation Models and Cross-Modal Reasoning
satai
3
490
Pythonでジオを使い倒そう! 〜それとFOSS4G Hiroshima 2026のご紹介を少し〜
wata909
0
1.3k
Featured
See All Featured
Easily Structure & Communicate Ideas using Wireframe
afnizarnur
194
17k
How to build an LLM SEO readiness audit: a practical framework
nmsamuel
1
650
Self-Hosted WebAssembly Runtime for Runtime-Neutral Checkpoint/Restore in Edge–Cloud Continuum
chikuwait
0
340
The Cult of Friendly URLs
andyhume
79
6.8k
XXLCSS - How to scale CSS and keep your sanity
sugarenia
249
1.3M
Art, The Web, and Tiny UX
lynnandtonic
304
21k
Ruling the World: When Life Gets Gamed
codingconduct
0
150
State of Search Keynote: SEO is Dead Long Live SEO
ryanjones
0
120
Responsive Adventures: Dirty Tricks From The Dark Corners of Front-End
smashingmag
254
22k
Technical Leadership for Architectural Decision Making
baasie
2
250
Designing Dashboards & Data Visualisations in Web Apps
destraynor
231
54k
B2B Lead Gen: Tactics, Traps & Triumph
marketingsoph
0
57
Transcript
どんなもの? 先行研究と比べて何がすごい? 技術の手法や肝は? どうやって有効だと検証した? ・ベースラインと比較して独自の報酬関数の設計により,k=0.9 (ほ んの少しだけ故障)の場合でベースラインを超えた ・antで実験した ・5つのseed値を使って,plain環境,broken環境で各100エピソー ド試行させた
・歩行タスクに対して,報酬関数を設計した ・次のスライドで詳細を説明 ・antに対して物理パラメータ (質量や摩擦)のランダム化によって故 障状態を作成 ・故障係数kを0~1の範囲で設定してPPOで学習させた ・提案手法では,k=0.9で故障による変化にも対応できていることを 示した 物理パラメータのランダム化による耐故障ロボットのための強化学習 (JSAI 2020)岡本 航昇, 川本 一彦 https://www.jstage.jst.go.jp/article/pjsai/JSAI2020/0/JSAI2020_3Rin402/_pdf 2024/01/26 論文を表す画像 被引用数:- 1/5
故障の表現 ❏ 故障は関節アクチュエータを制限することで表現 ❏ a’t:故障状態 ❏ k:[0,1]の範囲で調整する故障係数 ❏ at:t時刻でのアクチュエータの行動 (アクチュエータの出力値)
❏ 各トレーニングエピソード開始時にantの4本の脚からランダムに1本を 故障させる 2/5
報酬関数 ❏ 報酬 ❏ Rf (forward reward):x軸方向の変位が大きいほど大きな値となる報酬 ❏ Rs (survive
reward):1ステップ生存したら,無条件で与えられる報酬 ❏ Cctrl (control cost):1ステップでの行動が複雑になるほど大きくなるコスト ❏ Ccontact (contact cost):地面との接触力が大きいほど大きな値となるコスト ❏ 報酬設計の意図 ❏ できるだけ転ばずにx軸方向に歩行するように期待して設計 3/5
実験結果 ❏ 結果 ❏ K=0.9で故障させることでplain環境 ,broken環境の両方で平均報酬が向 上した ❏ 故障によって転倒していたベースラ イン手法に対して,転倒することな
く歩行する制御を獲得した ❏ k=0.7より小さくするとplain環境 ,broken環境の両方で平均報酬が低 下した ❏ これは,故障させすぎると歩行動作 を学習すること自体が困難になるこ とを示唆している 4/5 ※kの値を[0,1]の範囲でランダム化しながらトレーニング しても平均報酬が低下する結果となった
まとめと感想 ❏ まとめ ❏ 物理パラメータのランダム化を導入し,故障変化にロバストな方策獲得に 成功した ❏ k<0.7の範囲で,歩行動作に悪影響がでるため,ランダム化の範囲が重要 である ❏
ant特有の値なのか,それ以外のwalker2Dやhopperの場合でどうなるのか を実験する必要がある ❏ アクチュエータの故障に対する評価のみを行っているが,脚がとれるなど のシチュエーションで実験する必要がある ❏ 感想 ❏ 2足歩行の「walker2D or halfcheetah」,1足歩行の「hopper」で実験す るとどうなるか気になる ❏ 予想では,hopperだと1つの関節アクチュエータに依存するロボット環境 のため学習が難しくなるかもしれない? ❏ 報酬関数の設計を「物理法則によって理論的に導出」したのか,「実験で 試行錯誤して関数を設定」したのかが気になる 5/5