Upgrade to Pro — share decks privately, control downloads, hide ads and more …

Persistent homology group

Sponsored · Your Podcast. Everywhere. Effortlessly. Share. Educate. Inspire. Entertain. You do you. We'll handle the rest.
Avatar for ubnqf ubnqf
June 30, 2018

Persistent homology group

A brief introduction to "persistent homology group" in Japanese.

Avatar for ubnqf

ubnqf

June 30, 2018
Tweet

More Decks by ubnqf

Other Decks in Science

Transcript

  1. Outline 1. τϙϩδʔ 2. ୯ମతϗϞϩδʔ • ୯ମෳମ • ந৅୯ମෳମ •

    ࠯܈ • ڥք࡞༻ૉ • ϗϞϩδʔ܈ 3. ୯ମෳମͷߏங • ˇ Cech ෳମ • Vietoris-Rips ෳମ • ΞϧϑΝෳମ • ΫϦʔΫෳମ • ํମෳମ 4. ύʔγεςϯτϗϞϩδʔ܈ 2 / 46
  2. Outline 1. τϙϩδʔ 2. ୯ମతϗϞϩδʔ • ୯ମෳମ • ந৅୯ମෳମ •

    ࠯܈ • ڥք࡞༻ૉ • ϗϞϩδʔ܈ 3. ୯ମෳମͷߏங • ˇ Cech ෳମ • Vietoris-Rips ෳମ • ΞϧϑΝෳମ • ΫϦʔΫෳମ • ํମෳମ 4. ύʔγεςϯτϗϞϩδʔ܈ 3 / 46
  3. τϙϩδʔ τϙϩδʔʢҐ૬زԿֶʣ   ੾ΓషΓ͠ͳ͍࿈ଓมܗΛͯ͠΋ෆมͳੑ࣭ʢਤܗͷͭͳ͕ΓํʣΛ ௐ΂ΔزԿֶ   ' '

    ' ' ' ' 6' 6' # connected components # rings # cavities 1 1 1 0 1 0 0 0 1 ▶ ࿈݁੒෼ɼϦϯάɼۭಎͷ਺͸࿈ଓมܗͯ͠΋ෆม 4 / 46
  4. τϙϩδʔ • ࿈݁੒෼ɼϦϯάɼۭಎ͸ਤܗͷʮ݀ʯͱߟ͑ΒΕΔ • 0 ࣍ݩͷʮ݀ʯ ɿ࿈݁੒෼ (connected component) •

    1 ࣍ݩͷʮ݀ʯ ɿϦϯά (ring) • 2 ࣍ݩͷʮ݀ʯ ɿۭಎ (cavity, void) ▶ τϙϩδʔɿ࿈ଓมܗͨ͠ͱ͖ʹ݀ͷ਺͕౳͍͠ਤܗ͸ಉ͡ͱݟͳ͢ ʮ݀ʯͬͯͲ͏΍ͬͯఆٛ͢Δͷʁ ˠ ϗϞϩδʔ܈ 5 / 46
  5. Outline 1. τϙϩδʔ 2. ୯ମతϗϞϩδʔ • ୯ମෳମ • ந৅୯ମෳମ •

    ࠯܈ • ڥք࡞༻ૉ • ϗϞϩδʔ܈ 3. ୯ମෳମͷߏங • ˇ Cech ෳମ • Vietoris-Rips ෳମ • ΞϧϑΝෳମ • ΫϦʔΫෳମ • ํମෳମ 4. ύʔγεςϯτϗϞϩδʔ܈ 6 / 46
  6. ୯ମతϗϞϩδʔ • ϗϞϩδʔ܈ͷఆٛͷྲྀΕ ୯ମෳମ K ࠯ෳମ ϗϞϩδʔ܈ Hk(K) ୅਺Խ ڥքʹண໨ͯ͠

    ʮ݀ʯΛநग़ Ck(K) = ( c = nk X i=1 ✏i i ✏i 2 Z 2 ) Hk(K) = Ker@k/Im@k (C⇤(K), @⇤) @k : Ck(K) ! Ck 1(K) 7 / 46
  7. ୯ମෳମ ୯ମෳମ   k ࣍ݩͷࡾ֯ܗʢ୯ମʣΛͽͬͨΓுΓ߹ΘͤͯͰ͖ΔزԿֶతର৅   0-simplex (vertex)

    1-simplex (edge) 2-simplex (triangle) 3-simplex (tetrahedron)  simplicial complex NOT simplicial complex 8 / 46
  8. ୯ମෳମ ఆٛʢ୯ମʣ RN ಺ͷΞϑΝΠϯಠཱͳ k + 1 ݸͷ఺ p0, p1,

    . . . , pk ͕ͳ͢࠷খͷತू߹ { x ∈ RN x = k ∑ i=0 λipi, λi ≥ 0, k ∑ i=0 λi = 1 } (1) Λ k ୯ମ (k-simplex) ͱݺͼɼ|p0p1 · · · pk| Ͱද͢ɽ • k ୯ମ σ = |p0p1 · · · pk| ΛఆΊΔ k + 1 ݸͷ఺͔Β l + 1 (l < k) ݸͷ ఺ΛऔͬͯͰ͖Δ৽ͨͳ୯ମ τ = |p0p1 · · · pl| Λ σ ͷ໘ (face) ͱݺͼɼ τ ≺ σ Ͱද͢ p0 p1 p2 p0 p1 ⌧ 9 / 46
  9. ୯ମෳମ ఆٛʢ୯ମෳମʣ RN ಺ͷ༗ݶݸͷ୯ମͷू·Γ K ͕ҎԼͷ৚݅Λຬͨ͢ͱ͖ɼK Λ ୯ମෳମ (simplicial complex)

    ͱݺͿɿ 1. σ ∈ K, τ ≺ σ ⇒ τ ∈ K 2. τ, σ ∈ K, (τ ∩ σ) ̸= ϕ ⇒ (τ ∩ σ) ≺ τ ∧ (τ ∩ σ) ≺ σ ·ͨɼ୯ମෳମ K ʹؚ·ΕΔ୯ମͷ࣍ݩͷ࠷େ஋Λ K ͷ࣍ݩ dimK ͱͯ͠ఆΊΔɽ p0 p1 p2 K = {|p0p1p2 |, |p0p1 |, |p0p2 |, |p1p2 |, |p0 |, |p1 |, |p2 |} 10 / 46
  10. ୯ମෳମ ఆٛʢ୯ମෳମʣ RN ಺ͷ༗ݶݸͷ୯ମͷू·Γ K ͕ҎԼͷ৚݅Λຬͨ͢ͱ͖ɼK Λ ୯ମෳମ (simplicial complex)

    ͱݺͿɿ 1. σ ∈ K, τ ≺ σ ⇒ τ ∈ K 2. τ, σ ∈ K, (τ ∩ σ) ̸= ϕ ⇒ (τ ∩ σ) ≺ τ ∧ (τ ∩ σ) ≺ σ ·ͨɼ୯ମෳମ K ʹؚ·ΕΔ୯ମͷ࣍ݩͷ࠷େ஋Λ K ͷ࣍ݩ dimK ͱͯ͠ఆΊΔɽ • ৚݅ 2 ͸ʮ୯ମΛͽͬͨΓுΓ߹ΘͤΔํ๏ʯΛද͍ͯ͠Δ • ͭ·Γɼ֤୯ମͷுΓ߹Θͤ࡞ۀΛ୯ମͷ໘ಉ࢜ͰߦΘΕΔΑ͏ʹ੍ݶ • ୯ମෳମ K ࣗ਎͸୯ମͷ༗ݶू߹Ͱ͋Δ͕ɼK ಺ͷશ୯ମͷ࿨ू߹ |K| = ∪ σ∈K σ ΛऔΔ͜ͱͰ RN ಺ͷਤܗʢଟ໘ମʣ͕ಘΒΕΔ 11 / 46
  11. ந৅୯ମෳମ • ୯ମෳମ͸ RN ಺ͷ୯ମͷू·Γͷ૊߹ͤతੑ࣭ʹண໨ͨ֓͠೦ ˠ RN ͔Β཭Εɼ૊߹ͤతੑ࣭ͷΈΛऔΓग़ͨ͠ఆٛ΋Մೳ ఆٛʢந৅୯ମෳମʣ ༗ݶू߹

    V ͱ V ͷ෦෼ू߹ͷ༗ݶݸͷू·Γ Σ ͕ҎԼͷ৚݅Λຬͨ͢ͱ ͖ɼ(V, Σ) Λந৅୯ମෳମ (abstract simplicial complex) ͱݺͿɿ 1. v ∈ V, {v} ∈ Σ 2. σ ∈ Σ, τ ⊂ σ ⇒ τ ∈ Σ ͜͜ͰɼΣ ͷݩ σ = {v0, v1, . . . , vk} Λ k ୯ମͱݺͼɼdim σ = k ͱ͢Δɽ ·ͨɼσ ∈ Σ ͷ࠷େ࣍ݩΛந৅୯ମෳମͷ࣍ݩ dim(V, Σ) ͱͯ͠ఆΊΔɽ 12 / 46
  12. ந৅୯ମෳମ • ୯ମෳମ K ͸ந৅୯ମෳମ (V, Σ) ΛఆΊΔɽ ▶ ୯ମෳମΛҐ૬ۭؒͱͯ͠ݟͳ͢͜ͱ͕Ͱ͖Δ

    • ٯʹɼந৅୯ମෳମ (V, Σ) Λ࣮ݱ͢Δ୯ମෳମ K Λߏ੒Ͱ͖Δɽ ▶ ந৅୯ମෳମΛ RN ಺ͷ୯ମෳମͱͯ͠ѻ͑Δ K ୯ମෳମ V = {v | v 2 K, dim v = 0} ⌃ = {{v0, . . . , vk } | |v0 · · · vk | 2 K} (V, ⌃) ந৅୯ମෳମ K = {|p0 · · · pk | | {v0, . . . , vk } 2 ⌃} f : V ! RN : vi 7! f(vi) = (0, . . . , 0, 1, 0, . . . , 0) := pi 13 / 46
  13. ࠯܈ ఆٛʢ࠯܈ʣ n ࣍ݩ୯ମෳମ K ͷશͯͷ k ୯ମͷू·Γ Kk =

    {σi ∈ K | dim σi = k} ʹ͍ͭͯɼKk Ͱੜ੒͞ΕΔࣗ༝ Z/2Z Ճ܈ Ck(K) = { c = nk ∑ i=1 ϵi σi ϵi ∈ Z/2Z } (2) Λ k ࠯܈ (k-chain group) ͱݺͼɼc ∈ Ck(K) Λ k ࠯ (k-chain) ͱݺͿɽ ͳ͓ɼk < 0, n < k ⇒ Ck(K) = 0 ͱ͢Δɽ 1-chain 2-chain 14 / 46
  14. ڥք࡞༻ૉ ఆٛʢڥք࡞༻ૉʣ ֤ 0 ≥ k ≥ n ʹରͯ͠ɼઢܗ࡞༻ૉ ∂k

    : Ck(K) → Ck−1(K) Λ ڥք࡞༻ૉ (boundary operator) ͱݺͼɼҎԼͰఆΊΔɿ ∂k|v0 · · · vk| = k ∑ i=0 |v0 · · · vi−1vi+1 · · · vk| (3) v0 v1 v2 v3 v0 v1 v2 v0 v1 v3 v1 v2 v3 v0 v2 v3 @ |v1v2v3 | + |v0v2v3 | + |v0v1v3 | + |v0v1v2 | |v0v1v2v3 | 15 / 46
  15. ڥք࡞༻ૉ fundamental property   • ڥքͷڥք͸ͳ͍ ∂k ◦ ∂k+1

    = 0 for all k (4) • ࠯ෳମɿ࠯܈ C∗(K) ͱڥք࡞༻ૉ ∂∗ ͔ΒͳΔܥྻ 0 → Cn(K) ∂n → Cn−1(K) ∂n−1 → · · · ∂2 → C1(K) ∂1 → C0(K) → 0 (5)   @2 ! @1 ! @1@2 |v0v1v2 | = @1 (|v1v2 | + |v0v2 | + |v0v1 |) = @1 |v1v2 | + @1 |v0v2 | + @1 |v0v1 | = |v1 | + |v2 | + |v0 | + |v2 | + |v0 | + |v1 | = 0 ( * 1 + 1 = 0) ' ' 16 / 46
  16. ʮ݀ʯͱ͸ʁ • 1 ࣍ݩͷ৔߹ɿྠ͔͕ͬ͋Ε͹ʮ݀ʯʁ ʮ݀ʯͳ͠ ʮ݀ʯ͋Γ @2 ! @1 !

    ྠ͔͕ͬ͋ͬͯ ʮ݀ʯ͕͋Δ ྠ͔ͬ͸͋Δ͚Ͳ ʮ݀ʯ͸ͳ͍ ▶ 1 ࣍ݩͷʮ݀ʯͱ͸ɼڥքͷͳ͍ 1 ୯ମͷू·Γʢྠ͔ͬʣͰ͋ͬͯ 2 ୯ମͷڥքʹͳ͍ͬͯͳ͍΋ͷ ˣҰൠԽ   k ࣍ݩͷʮ݀ʯͱ͸ɼڥքͷͳ͍ k ୯ମͷू·ΓͰ͋ͬͯ k + 1 ୯ମͷڥքʹͳ͍ͬͯͳ͍΋ͷ   17 / 46
  17. ʮ݀ʯͱ͸ʁ   k ࣍ݩͷʮ݀ʯͱ͸ɼڥքͷͳ͍ k ୯ମͷू·ΓͰ͋ͬͯ k + 1

    ୯ମͷڥքʹͳ͍ͬͯͳ͍΋ͷ   • ྠମ܈ (cyclic group) • Zk (K) = Ker ∂k (K) = {c ∈ Ck (K) | ∂k c = 0} • ڥքྠମ܈ (boundary group) • Bk (K) = Im ∂k+1 (K) = {c ∈ Ck (K) | c = ∂k+1 c′, c′ ∈ Ck+1 (K)} ɹ࣍ݩͷʮ݀ʯͱ͸ɼڥքͷͳ͍ɹ୯ମͷू·ΓͰ͋ͬͯ ɹɹɹ୯ମͷڥքʹͳ͍ͬͯͳ͍΋ͷ ྠମ܈ DZDMJDHSPVQ  ڥքྠମ܈ CPVOEBSZHSPVQ  Bk(K) ⇢ Zk(K) ⇢ Ck(K) * @k @k+1 = 0 Bk+1(K) Zk+1(K) Ck+1(K) Zk(K) Ck(K) Bk(K) Bk 1(K) Zk 1(K) Ck 1(K) 0 0 0 @k+1 @k Zk(K) = Ker @k = {c 2 Ck(K) | @k c = 0} Bk(K) = Im @k+1 = {c 2 Ck(K) | c = @k+1 c0, c0 2 Ck+1(K)} 18 / 46
  18. ϗϞϩδʔ܈ ఆٛʢϗϞϩδʔ܈ʣ ୯ମෳମ K ͷ k ࣍ϗϞϩδʔ܈ (k-dimensional homology group)

    Λɼ ঎Ճ܈ Hk(K) = Zk(K)/Bk(K) = Ker ∂k/Im ∂k+1 (6) ͰఆΊΔɽ·ͨɼHk(K) ͷݩΛϗϞϩδʔྨͱݺͿɽ • k ࣍ϕον਺ βk = rank (Hk(K)) ▶ k ࣍ݩͷʮ݀ʯͷ਺Λද͢Ґ૬ෆมྔ • K ͷ֤࿈݁੒෼Λ K1, . . . , Ks ͱ͢Δͱɼશͯͷ k ʹ͍ͭͯ Hk(K) = Hk(K1) ⊕ · · · ⊕ Hk(Ks) ͕੒ཱ ▶ ୯ମෳମ K ͷϗϞϩδʔ܈͸֤࿈݁੒෼͝ͱʹٻΊΕ͹Α͍ 19 / 46
  19. ิ଍ɿ޲͖෇͚ΒΕͨ୯ମ • ্هͰ͸ࣗ༝ Z2 Ճ܈ͱͯ͠ͷ࠯܈Λ΋ͱʹϗϞϩδʔ܈Λ ఆٛͨͨ͠Ίɼ୯ମͷ޲͖Λߟྀ͢Δඞཁ͕ͳ͔ͬͨ • ୯ମͷ޲͖Λߟྀ͢Δ৔߹͸ɼ࠯܈ʹ Z Ճ܈ͷߏ଄͕ೖΔ

    • ޲͖ͷҧ͍͸ϚΠφεූ߸Ͱදݱ ⟨v1 v2 v3 ⟩ = −⟨v1 v3 v2 ⟩ 2 1 3 2 1 3 hv1v2v3 i hv1v3v2 i • ޲͖෇͚ΒΕͨ୯ମ ⟨v0 · · · vk⟩ ʹର͢Δڥք࡞༻ૉ͸ҎԼͰఆٛɿ ∂k⟨v0 · · · vk⟩ = k ∑ i=0 (−1)i⟨v0 · · · vi−1vi+1 · · · vk⟩ ▶ ্ͷఆٛ͸޲͖Λߟྀͯ͠ڥքΛऔΓग़͢ૢ࡞Λදݱ 20 / 46
  20. Outline 1. τϙϩδʔ 2. ୯ମతϗϞϩδʔ • ୯ମෳମ • ந৅୯ମෳମ •

    ࠯܈ • ڥք࡞༻ૉ • ϗϞϩδʔ܈ 3. ୯ମෳମͷߏங • ˇ Cech ෳମ • Vietoris-Rips ෳମ • ΞϧϑΝෳମ • ΫϦʔΫෳମ • ํମෳମ 4. ύʔγεςϯτϗϞϩδʔ܈ 21 / 46
  21. ୯ମෳମͷߏங • σʔλ͕༩͑ΒΕͨͱ͖ɼͲͷΑ͏ʹ୯ମෳମΛߏங͢Ε͹Α͍͔ʁ graph point cloud image Data ü  Cech

    complex ü  Vietoris-Rips complex ü  alpha complex ^ ü  clique complex ü  neighborhood complex ü  cubical complex 22 / 46
  22. ˇ Cech ෳମ ˇ Cech ෳମ C(P, r) • RN

    ಺ͷ֤఺ xi Λத৺ͱͨ͠൒ܘ r ͷٿ Br(xi) ͷू·Γ Φ = {Br(xi) | xi ∈ P} ʹ͍ͭͯͷ຺ମ 1 P = {xi ∈ RN | i = 1, . . . , m} Br(xi) = {x ∈ RN | ∥x − xi∥ ≤ r} Bi r 1ิ଍ࢀর 23 / 46
  23. Vietoris-Rips ෳମ Vietoris-Rips ෳମ R(P, r) • RN ಺ͷ֤఺ xi

    Λத৺ͱͨ͠൒ܘ r ͷٿ Br(xi) ͷू·Γ Φ = {Br(xi) | xi ∈ P} ʹ͍ͭͯɼ௖఺ू߹Λ V = {1, . . . , m}ɼ ୯ମͷू·ΓΛ Σ = {{i0, . . . , ik} | Bis ∩ Bit ̸= ϕ, 0 ≤ s, t ≤ k} Ͱ ఆΊͨந৅୯ମෳମ (V, Σ) • ஫ҙɿR(P, r) ͸຺ମͱͯ͠ಘΒΕΔ୯ମෳମͰ͸ͳ͍ͨΊɼ ٿͷ࿨ू߹ ∪ m i=1 Br(xi) ͱͷϗϞτϐʔಉ஋ੑ͸อূ͞Εͳ͍ Bi r 24 / 46
  24. ΞϧϑΝෳମ ΞϧϑΝෳମ α(P, r) • RN ಺ͷ֤఺ xi ʹର͢Δ൒ܘ r

    ͷٿ Br(xi) ͱϘϩϊΠྖҬ Vi = {x ∈ RN | ∥x − xi∥ ≤ ∥x − xj∥, j ̸= i} ͱͷڞ௨෦෼ Wi = Br(xi) ∩ Vi ͷू·Γ Ψ = {Wi | i = 1, . . . , m} ʹ͍ͭͯͷ຺ମ \ = Br(xi) Vi Wi ↵(P, r) 25 / 46
  25. ΫϦʔΫෳମ ΫϦʔΫෳମ • άϥϑͷ k-ΫϦʔΫʢ෦෼׬શάϥϑʣΛ k ୯ମͱݟͳ͢͜ͱͰ ߏஙͨ͠ෳମ • άϥϑཧ࿦ͷ࿮૊ΈͰ͸ʮk

    ਓಉ͕࢜ޓ͍ʹͻͦͻͦ࿩Λ͢Δʯؔ܎ͱ ʮk ਓͰू·ͬͯձ࿩Λ͢Δʯؔ܎Λ۠ผͰ͖ͳ͍͕ɼޙऀΛ k ୯ମ ͱͯ͠ද͢͜ͱͰ۠ผͰ͖ΔΈ͍ͨͳ࿩΋ (Maletic+ 2012) HSBQI DMJRVFDPNQMFY 26 / 46
  26. Outline 1. τϙϩδʔ 2. ୯ମతϗϞϩδʔ • ୯ମෳମ • ந৅୯ମෳମ •

    ࠯܈ • ڥք࡞༻ૉ • ϗϞϩδʔ܈ 3. ୯ମෳମͷߏங • ˇ Cech ෳମ • Vietoris-Rips ෳମ • ΞϧϑΝෳମ • ΫϦʔΫෳମ • ํମෳମ 4. ύʔγεςϯτϗϞϩδʔ܈ 28 / 46
  27. ύʔγεςϯτϗϞϩδʔ܈ ύʔγεςϯτϗϞϩδʔ܈   • ෳମͷύϥϝʔλมԽʹ൐͏૿େྻʢϑΟϧτϨʔγϣϯʣʹ ର͢ΔϗϞϩδʔ܈ʢ࣌ؒ࣠ + ϗϞϩδʔ܈ʣ 

     • e.g. ˇ Cech ෳମͷϑΟϧτϨʔγϣϯ C : C(P, r(0)) ⊂ C(P, r(1)) ⊂ · · · ⊂ C(P, r(5)) ⊂ · · · t = 0 t = 1 t = 2 t = 3 t = 4 t = 5 30 / 46
  28. ύʔγεςϯτϗϞϩδʔ܈ • ୯ମෳମ Kt (t = 0, 1, . .

    . ) ͷϑΟϧτϨʔγϣϯ K : K0 ⊂ K1 ⊂ · · · Kt ⊂ · · · • ࣌ࠁ t Ͱͷ୯ମෳମͷ k ୯ମͷू·Γ Kt k = {σ ∈ Kt | dim σ = k} • ୯ମ σ ∈ K ͷൃੜ࣌ࠁ T(σ) = t if σ ∈ Kt \ Kt−1 ఆٛʢϑΟϧτϨʔγϣϯ K ʹର͢Δ k ࠯܈ʣ ࣗ༝ Z2 Ճ܈ Ck(Kt) = ∑ σ∈Kt k Z2σ ͷ௚࿨ Ck(K) = ⊕ t≥0 Ck(Kt) = { (c0, c1, . . . , ct, . . . ) | ct ∈ Ck(Kt) } (7) ʹ x ͷ࡞༻ x · (c0, c1, . . . ) = (0, c0, c1, . . . ) Λಋೖ͢ΔͱɼCk(K) ͸ ࣍਺෇͖ Z2[x] Ճ܈ͱͳΔɽ͜ΕΛϑΟϧτϨʔγϣϯ K ʹର͢Δ k ࠯܈ͱݺͿɽ 31 / 46
  29. ύʔγεςϯτϗϞϩδʔ܈ • แؚࣸ૾ it : Ck(Kt) → Ck(K) it(σ) =

    (c0, c1, . . . ), ci = { σ (i = t) 0 (i ̸= t) (8) • Ck(K) ͷجఈ ξk = {eσ = iT(σ) (σ) | σ ∈ Kk} • ڥք࡞༻ૉ ∂k : Ck(K) → Ck−1(K) @k(e ) = k X i=0 ⇣ xT ( ) T ( i) ⌘ e i , 2 Kk i • ∂k−1 ◦ ∂k = 0 • Zk (K) = Ker ∂k = ⊕ t≥0 Zk (Kt) • Bk (K) = Im ∂k+1 = ⊕ t≥0 Bk (Kt) 32 / 46
  30. ύʔγεςϯτϗϞϩδʔ܈ ఆٛʢύʔγεςϯτϗϞϩδʔ܈ʣ ୯ମෳମͷϑΟϧτϨʔγϣϯ K ʹର͢Δ k ࣍ύʔγεςϯτ ϗϞϩδʔ܈ (persistent homology

    group) Hk(K) ͸ҎԼͰ༩͑ΒΕΔɿ Hk(K) = Zk(K)/Bk(K) = ⊕ t≥0 Zk(Kt)/Bk(Kt) = ⊕ t≥0 Hk(Kt) (9) • ύʔγεςϯτϗϞϩδʔ܈ͷҰҙ෼ղఆཧ; Hk(K) ≃ ⊕ s i=1 I[bi, di] • ύʔγεςϯτ۠ؒ I[b, d]ʢb: ݀ͷൃੜ࣌ࠁɼd: ݀ͷফ໓࣌ࠁʣ ▶ શͯͷ݀ͷൃੜ࣌ࠁͱফ໓࣌ࠁΛࢦఆ͢Δ͜ͱͰʢಉܕΛআ͍ͯʣ Hk(K) ΛҰҙʹදݱՄೳ 33 / 46
  31. ύʔγεςϯτϗϞϩδʔ܈ • ύʔγεςϯτϗϞϩδʔ܈ Hk(K) ͷදݱํ๏ 0 1 2 3 4

    CBSDPEF ֤ੜ੒ݩʢ݀ʣͷ CJSUI͔ΒEFBUI·Ͱ ઢΛҾ͘ 0 1 2 3 4 4 3 2 1 QFSTJTUFODFEJBHSBN CJSUI EFBUI ֤ੜ੒ݩͷCJSUI C ͱ EFBUI E Λ࣍ݩฏ໘্ͷ ఺ C E ͱͯ͠දݱ ü  ୹͍ઢˠOPJTZ ü  ௕͍ઢˠSPCVTU ü  ର֯ઢʹ͍ۙ఺ˠOPJTZ ü  ର֯ઢ͔Βԕ͍఺ˠSPCVTU t = 0 t = 1 t = 2 t = 3 t = 4 34 / 46
  32. Ԡ༻ྫɿλϯύΫ࣭ͷߏ଄ղੳ 1 • λϯύΫ࣭ͷѹॖ཰ʹ૬ؔͷ͋ΔྔΛύʔγεςϯτਤ͔Βநग़ assumption 1 ѹॖ཰͸಺෦ͷۭಎʹؔ܎ assumption 2 assumption

    3 assumption 4 ण໋ͷ୹͍ੜ੒ݩ͸τϙϩδΧϧͳ ϊΠζͰ͋Γɼѹॖ཰ʹد༩͠ͳ͍ ີͳݪࢠ഑ஔ͸ܗঢ়͕มԽ͠ʹ͍͘
 ʢѹॖ཰΁ͷد༩͕খ͍͞ʣ ԁ౵ྖҬͷ࣠ํ޲ͷ௕͕͞௕͍৔߹ ΑΓ޿͍಺෦ྖҬΛ࣋ͭͨΊѹॖ཰ ΁ͷد༩͸େ͖͍ ୹໋ͷੜ੒ݩ ௕໋ͷੜ੒ݩ ૄͳݪࢠ഑ஔ ີͳݪࢠ഑ஔ 36 / 46
  33. Ԡ༻ྫɿλϯύΫ࣭ͷߏ଄ղੳ 1 • લทͷԾఆΛ౿·͑ɼҎԼͷྔ Cp Λಋೖ Cp(l1, u1, l2, u2,

    δ) = |PD2(l2, u2, δ)| |PD1(l1, u1, δ)| with PDk(lk, uk, δ) = {(pb, pd) ∈ PDk | pb ∈ [lk, uk]} with Nk(δ) = {(pb, pd) ∈ PDk | pd − pb ≤ δ} • ݁ՌɿCp ͱ࣮ݧ஋ͷ૬ؔ • http://www2.math.kyushu-u.ac.jp/ ∼nishii/FujitsuWS/Hiraoka.pdf ΑΓҾ༻ 37 / 46 ѹॖ཰ C p ͷؒ
  34. Ԡ༻ྫɿλϯύΫ࣭ͷߏ଄ղੳ 2 • λϯύΫ࣭ͷߏ଄ʹج͍ͮͯਐԽܥ౷थΛߏங • 3 छྨͷௗྨٴͼ 4 छྨͷᄡೕྨͷϔϞάϩϏϯσʔλʹ͍ͭͯ ύʔγεςϯτਤΛܭࢉ͠ɼͦͷؒͷڑ཭Λ΋ͱʹܥ౷थΛߏங

    • 2 ͭͷϑΟϧτϨʔγϣϯ K, L ʹର͢Δύʔγεςϯτਤͷ ڑ཭ʢϘτϧωοΫڑ཭ʣ͸ҎԼͰܭࢉ d(K, L) = inf γ sup p∈P Dk(K) ∥p − γ(p)∥∞ where PDk (K) := PDk (K) ∪ {(a, a) | a ∈ R} • ݁Ռɿଥ౰ͳܥ౷थ͕ ߏஙͰ͖ͨ 38 / 46 Πϯί ΠϯυΨϯ Ξώϧ ϊ΢αΪ ϒλ ϠΪ ωζϛ
  35. Ԡ༻ྫɿෳࡶωοτϫʔΫ 1 • ॏΈ෇͖ωοτϫʔΫʹ͍ͭͯͷάϥϑϑΟϧτϨʔγϣϯʹର͢Δ ύʔγεςϯτϗϞϩδʔ܈Λܭࢉ͠ɼ0 ∼ 2 ࣍ͷϕον਺Λ΋ͱʹ ωοτϫʔΫؒͷڑ཭ΛଌΔ (Carstens+

    2013) • άϥϑϑΟϧτϨʔγϣϯɿॏΈͷᮢ஋ΛมԽͤͨ͞ͱ͖ͷ ΫϦʔΫෳମʹؔ͢Δ૿େྻ 0.4 0.7 0.6 0.8 0.9 original weighted NW w⇤ 0.9 w⇤ 0.5 w⇤ inf · · · · · · ▶ ڞஶؔ܎ωοτϫʔΫͱ ER ωοτϫʔΫͷ β0, β1, β2 ʹؔ͢Δ ύʔγεςϯτਤͷϘτϧωοΫڑ཭ΛଌΔͱ݁ߏ͕ࠩग़Δ • ER ͸ non-clustered/non-modular ͳͷͰ౰વͰ͸... 39 / 46
  36. Ԡ༻ྫɿෳࡶωοτϫʔΫ 2 • ۚ༥ωοτϫʔΫʹରͯ͠ύʔγεςϯτϗϞϩδʔΛར༻͠ɼ ۚ༥ةػͷલஹΛਪଌ (Gidea 2017) • ձࣾגࣜͷ૬ؔΛॏΈͱͨ͠ωοτϫʔΫʹ͍ͭͯɼ௨ৗ࣌ͱ ۚ༥ةػ௚લͷύʔγεςϯτਤΛൺֱ

    • ύʔγεςϯτਤؒͷڑ཭ͱͯ͠ Wasserstein ڑ཭Λར༻ • γ : X → Y ͸શ୯ࣹʢPD ∪ Λ ؒͷશ୯ࣹͷଘࡏ͸อূ͞Ε͍ͯΔʣ Wp(X, Y ) = inf γ ( ∑ x∈X ∥x − γ(x)∥p ∞ ) 1/p ▶ 0 ∼ 2 ࣍ͷੜ੒ݩ͸௨ৗ࣌ͷגࣜࢢ৔ͷঢ়ଶΛଊ͓͑ͯΓɼੜ੒ݩͷ ফ໓Λ௨ͯۚ͠༥ةػͷલஹΛ͋Δఔ౓࡯஌Ͱ͖Δ • ۚ༥ةػʹݶΒͣ critical point ͷಛఆ΍ dynamic graph ͷߏ଄త ҟৗݕ஌ͳͲʹ΋࢖͑ͦ͏ 40 / 46
  37. Ԡ༻ྫɿը૾ॲཧ • ϐΫηϧը૾ʹ͍ͭͯํମෳମͷϑΟϧτϨʔγϣϯΛߟ͑ɼ෺ମͷ ܗঢ়ʢڥքʣΛೝࣝ • ํମෳମͷϑΟϧτϨʔγϣϯ • 2 ஋ը૾ ˠ

    ࠇྖҬΛ๲Β·ͤΔʢ͘Γ͜Έม׵ʹ͓͚ΔૈࢹԽͷϊϦʣ • άϨʔεέʔϧը૾ ˠ ద౰ͳᮢ஋Ͱ 2 ஋Խ or Ϩϕϧηοτ๏ʢࠇͱΈͳ͢ᮢ஋Λ૿Ճʣ 41 / 46
  38. Ԡ༻ྫɿ౷ܭɾػցֶश • ౷ܭɾػցֶशͰ͸ҰൠʹϕΫτϧΛೖྗͱͯ͠औΔ ˠ ύʔγεςϯτਤΛϕΫτϧԽ͢Δ͜ͱͰσʔλͷزԿֶతಛ௃Λ ൓өֶͨ͠श͕Ͱ͖Δ͸ͣ • Persistence landscape (Bubenik

    2015) • Persistence scale space kernel (Reininghaus+ 2015) • Persistence weighted Gaussian kernel (Kusano+ 2016) • Perisistence image (Adams+ 2017) • ৄࡉ͸෱ਫ͞Μ@౷਺ݚͷεϥΠυΛࢀরɿ • http://www.math.chuo-u.ac.jp/ENCwMATH/EwM70_Fukumizu.pdf 42 / 46
  39. ࢀߟจݙ • ฏԬ༟ষʮλϯύΫ࣭ߏ଄ͱτϙϩδʔɿύʔγεςϯτϗϞϩδʔ ܈ೖ໳ʯڞཱग़൛, 2013. • G. Carlsson, “Topology and

    data,” Bulletin of the American Mathematical Society 46.2, pp. 255–308, 2009. • F. Chazal and B. Michel, “An introduction to topological data analysis: fundamental and practical aspects for data scientists,” arXiv preprint, arXiv:1710.04019, 2017. • C. J. Carstens and K. J. Horadam, “Persistent homology of collaboration networks,” Mathematical problems in engineering 2013, 2013. • M. Gidea, “Topological Data Analysis of Critical Transitions in Financial Networks,” International Conference and School on Network Science, Springer, Cham, pp.47–59, 2017. • P. Bubenik, “Statistical topological data analysis using persistence landscapes,” The Journal of Machine Learning Research archive, 16(1), pp. 77–102, 2015. 43 / 46
  40. ࢀߟจݙ • J.Reininghaus, S.Huber, U.Bauer and R. Kwitt. “A Stable

    Multi-Scale Kernel for Topological Machine Learning,” IEEE Conference on Computer Vision and Pattern Recognition, pp. 4741–4748, 2015. • G. Kusano, K. Fukumizu and Y. Hiraoka. “Persistence weighted Gaussian kernel for topological data analysis,” Proceedings of the 33rd International Conference on Machine Learning (ICML), 2016. • H. Adams, S. Chepushtanova, T. Emerson, E. Hanson, M. Kirby, F. Motta, R. Neville, C. Peterson, P. Shipman and L. Ziegelmeier, “Persistence Images: A Stable Vector Representation of Persistent Homology,” http://arxiv.org/abs/1507.06217. 44 / 46
  41. ิ଍ɿ຺ମఆཧ • ͦ΋ͦ΋ɼσʔλΛ୯ମෳମͱͯ͠දݱͯ͠େৎ෉ͳͷʁ ˠ ຺ମఆཧ ఆٛʢ຺ମʣ ෦෼ू߹଒ Φ = {Bi

    ⊂ RN | i = 1, . . . , m} ͕෦෼ू߹ X ⊂ RN Λ ඃ෴͍ͯ͠Δঢ়گΛߟ͑ΔʀX = ∪ m i=1 Bi. ͜ͷͱ͖ɼந৅୯ମෳମ (V, Σ) Λ Φ ͷ຺ମ (nerve) ͱݺͼɼN(Φ) Ͱද͢ɽ V = {1, . . . , m} Σ =    {i0, . . . , ik} k ∩ j=0 Bij ̸= ϕ    45 / 46
  42. ิ଍ɿ຺ମఆཧ ຺ମఆཧ (Nerve theorem) ತด෦෼ू߹଒ Φ = {Bi ⊂ RN

    | i = 1, . . . , m} ͕෦෼ू߹ X ⊂ RN Λ ඃ෴͍ͯ͠Δঢ়گΛߟ͑ΔʀX = ∪ m i=1 Bi. ͜ͷͱ͖ɼX ͱ຺ମ N(Φ) ͸ϗϞτϐʔಉ஋ͱͳΔɽ B1 B2 B3 2 1 3 N( ) ▶ X ͷϗϞτϐʔෆมͳྔΛௐ΂Δࡍʹ͸ɼ ʢҰൠʹ X ΑΓऔΓѻ͍͕ ༰қͳʣ຺ମʹม׵͔ͯ͠Βௐ΂Ε͹ྑ͍ 46 / 46