Upgrade to Pro — share decks privately, control downloads, hide ads and more …

persistent homology group

Avatar for ubnqf ubnqf
June 28, 2018

persistent homology group

A brief (?) survey of "persistent homology group"

Avatar for ubnqf

ubnqf

June 28, 2018
Tweet

More Decks by ubnqf

Other Decks in Science

Transcript

  1. Outline 1. τϙϩδʔ 2. ୯ମతϗϞϩδʔ • ୯ମෳମ • ந৅୯ମෳମ •

    ࠯܈ • ڥք࡞༻ૉ • ϗϞϩδʔ܈ 3. ୯ମෳମͷߏங • ຺ମఆཧ • ˇ Cech ෳମ • Vietoris-Rips ෳମ • ΞϧϑΝෳମ • ํମෳମ 4. ύʔγεςϯτϗϞϩδʔ܈ 2 / 43
  2. Outline 1. τϙϩδʔ 2. ୯ମతϗϞϩδʔ • ୯ମෳମ • ந৅୯ମෳମ •

    ࠯܈ • ڥք࡞༻ૉ • ϗϞϩδʔ܈ 3. ୯ମෳମͷߏங • ຺ମఆཧ • ˇ Cech ෳମ • Vietoris-Rips ෳମ • ΞϧϑΝෳମ • ํମෳମ 4. ύʔγεςϯτϗϞϩδʔ܈ 3 / 43
  3. τϙϩδʔ τϙϩδʔʢҐ૬زԿֶʣ   ੾ΓషΓ͠ͳ͍࿈ଓมܗΛͯ͠΋ෆมͳੑ࣭ʢਤܗͷͭͳ͕ΓํʣΛ ௐ΂ΔزԿֶ   ' '

    ' ' ' ' 6' 6' # connected components # rings # cavities 1 1 1 0 1 0 0 0 1 ▶ ࿈݁੒෼ɼϦϯάɼۭಎͷ਺͸࿈ଓมܗͯ͠΋ෆม 4 / 43
  4. τϙϩδʔ • ࿈݁੒෼ɼϦϯάɼۭಎ͸ਤܗͷʮ݀ʯͱߟ͑ΒΕΔ • 0 ࣍ݩͷʮ݀ʯ ɿ࿈݁੒෼ (connected component) •

    1 ࣍ݩͷʮ݀ʯ ɿϦϯά (ring) • 2 ࣍ݩͷʮ݀ʯ ɿۭಎ (cavity, void) ▶ τϙϩδʔɿ࿈ଓมܗͨ͠ͱ͖ʹ݀ͷ਺͕౳͍͠ਤܗ͸ಉ͡ͱݟͳ͢ ʮ݀ʯͬͯͲ͏΍ͬͯఆٛ͢Δͷʁ ˠ ϗϞϩδʔ܈ 5 / 43
  5. τϙϩδʔ • زԿֶతର৅ X ʹରͯ͠ɼk ࣍ϗϞϩδʔ܈ Hk(X) ͸ ҎԼΛຬͨ͢ •

    H0 (X) ≃ Rn0 n0 : # connected components • H1 (X) ≃ Rn1 n1 : # rings • H2 (X) ≃ Rn2 n2 : # cavities . . . • Hk (X) ≃ Rnk nk : # k-dimensional holes H0(X) ' R H1(X) ' R4 H2(X) ' R X = T2 2 6 / 43
  6. Outline 1. τϙϩδʔ 2. ୯ମతϗϞϩδʔ • ୯ମෳମ • ந৅୯ମෳମ •

    ࠯܈ • ڥք࡞༻ૉ • ϗϞϩδʔ܈ 3. ୯ମෳମͷߏங • ຺ମఆཧ • ˇ Cech ෳମ • Vietoris-Rips ෳମ • ΞϧϑΝෳମ • ํମෳମ 4. ύʔγεςϯτϗϞϩδʔ܈ 7 / 43
  7. ୯ମతϗϞϩδʔ • ϗϞϩδʔ܈ͷఆٛͷྲྀΕ ୯ମෳମ K ࠯ෳମ ϗϞϩδʔ܈ Hk(K) ୅਺Խ ڥքʹண໨ͯ͠

    ʮ݀ʯΛநग़ Ck(K) = ( c = nk X i=1 ✏i i ✏i 2 Z 2 ) Hk(K) = Ker@k/Im@k (C⇤(K), @⇤) @k : Ck(K) ! Ck 1(K) 8 / 43
  8. ୯ମෳମ ୯ମෳମ   k ࣍ݩͷࡾ֯ܗʢ୯ମʣΛͽͬͨΓுΓ߹ΘͤͯͰ͖ΔزԿֶతର৅   0-simplex (vertex)

    1-simplex (edge) 2-simplex (triangle) 3-simplex (tetrahedron)  simplicial complex NOT simplicial complex 9 / 43
  9. ୯ମෳମ ఆٛʢ୯ମʣ RN ಺ͷΞϑΝΠϯಠཱͳ k + 1 ݸͷ఺ p0, p1,

    . . . , pk ͕ͳ͢࠷খͷತू߹ { x ∈ RN x = k ∑ i=0 λipi, λi ≥ 0, k ∑ i=0 λi = 1 } (1) Λ k ୯ମ (k-simplex) ͱݺͼɼ|p0p1 · · · pk| Ͱද͢ɽ • k ୯ମ σ = |p0p1 · · · pk| ΛఆΊΔ k + 1 ݸͷ఺͔Β l + 1 (l < k) ݸͷ ఺ΛऔͬͯͰ͖Δ৽ͨͳ୯ମ τ = |p0p1 · · · pl| Λ σ ͷ໘ (face) ͱݺͼɼ τ ≺ σ Ͱද͢ p0 p1 p2 p0 p1 ⌧ 10 / 43
  10. ୯ମෳମ ఆٛʢ୯ମෳମʣ RN ಺ͷ༗ݶݸͷ୯ମͷू·Γ K ͕ҎԼͷ৚݅Λຬͨ͢ͱ͖ɼK Λ ୯ମෳମ (simplicial complex)

    ͱݺͿɿ 1. σ ∈ K, τ ≺ σ ⇒ τ ∈ K 2. τ, σ ∈ K, (τ ∩ σ) ̸= ϕ ⇒ (τ ∩ σ) ≺ τ ∧ (τ ∩ σ) ≺ σ ·ͨɼ୯ମෳମ K ʹؚ·ΕΔ୯ମͷ࣍ݩͷ࠷େ஋Λ K ͷ࣍ݩ dimK ͱͯ͠ఆΊΔɽ p0 p1 p2 K = {|p0p1p2 |, |p0p1 |, |p0p2 |, |p1p2 |, |p0 |, |p1 |, |p2 |} 11 / 43
  11. ୯ମෳମ ఆٛʢ୯ମෳମʣ RN ಺ͷ༗ݶݸͷ୯ମͷू·Γ K ͕ҎԼͷ৚݅Λຬͨ͢ͱ͖ɼK Λ ୯ମෳମ (simplicial complex)

    ͱݺͿɿ 1. σ ∈ K, τ ≺ σ ⇒ τ ∈ K 2. τ, σ ∈ K, (τ ∩ σ) ̸= ϕ ⇒ (τ ∩ σ) ≺ τ ∧ (τ ∩ σ) ≺ σ ·ͨɼ୯ମෳମ K ʹؚ·ΕΔ୯ମͷ࣍ݩͷ࠷େ஋Λ K ͷ࣍ݩ dimK ͱͯ͠ఆΊΔɽ • ৚݅ 2 ͸ʮ୯ମΛͽͬͨΓுΓ߹ΘͤΔํ๏ʯΛද͍ͯ͠Δ • ͭ·Γɼ֤୯ମͷுΓ߹Θͤ࡞ۀΛ୯ମͷ໘ಉ࢜ͰߦΘΕΔΑ͏ʹ੍ݶ • ୯ମෳମ K ࣗ਎͸୯ମͷ༗ݶू߹Ͱ͋Δ͕ɼK ಺ͷશ୯ମͷ࿨ू߹ |K| = ∪ σ∈K σ ΛऔΔ͜ͱͰ RN ಺ͷਤܗʢଟ໘ମʣ͕ಘΒΕΔ 12 / 43
  12. ந৅୯ମෳମ • ୯ମෳମ͸ RN ಺ͷ୯ମͷू·Γͷ૊߹ͤతੑ࣭ʹண໨ͨ֓͠೦ ˠ RN ͔Β཭Εɼ૊߹ͤతੑ࣭ͷΈΛऔΓग़ͨ͠ఆٛ΋Մೳ ఆٛʢந৅୯ମෳମʣ ༗ݶू߹

    V ͱ V ͷ෦෼ू߹ͷ༗ݶݸͷू·Γ Σ ͕ҎԼͷ৚݅Λຬͨ͢ͱ ͖ɼ(V, Σ) Λந৅୯ମෳମ (abstract simplicial complex) ͱݺͿɿ 1. v ∈ V, {v} ∈ Σ 2. σ ∈ Σ, τ ⊂ σ ⇒ τ ∈ Σ ͜͜ͰɼΣ ͷݩ σ = {v0, v1, . . . , vk} Λ k ୯ମͱݺͼɼdim σ = k ͱ͢Δɽ ·ͨɼσ ∈ Σ ͷ࠷େ࣍ݩΛந৅୯ମෳମͷ࣍ݩ dim(V, Σ) ͱͯ͠ఆΊΔɽ 13 / 43
  13. ந৅୯ମෳମ • ୯ମෳମ K ͸ந৅୯ମෳମ (V, Σ) ΛఆΊΔɽ ٯʹɼந৅୯ମෳମ (V,

    Σ) Λ࣮ݱ͢Δ୯ମෳମ K Λߏ੒Ͱ͖Δɽ ▶ ୯ମෳମΛҐ૬ۭؒͱͯ͠ݟͳ͢͜ͱ͕Ͱ͖Δ ▶ ٯʹɼந৅୯ମෳମΛ RN ಺ͷ୯ମෳମͱͯ͠ѻ͑Δ K ୯ମෳମ V = {v | v 2 K, dim v = 0} ⌃ = {{v0, . . . , vk } | |v0 · · · vk | 2 K} (V, ⌃) ந৅୯ମෳମ K = {|p0 · · · pk | | {v0, . . . , vk } 2 ⌃} f : V ! RN : vi 7! f(vi) = (0, . . . , 0, 1, 0, . . . , 0) := pi 14 / 43
  14. ࠯܈ ఆٛʢ࠯܈ʣ n ࣍ݩ୯ମෳମ K ͷશͯͷ k ୯ମͷू·Γ Kk =

    {σi ∈ K | dim σi = k} ʹ͍ͭͯɼKk Ͱੜ੒͞ΕΔࣗ༝ Z/2Z Ճ܈ Ck(K) = { c = nk ∑ i=1 ϵi σi ϵi ∈ Z/2Z } (2) Λ k ࠯܈ (k-chain group) ͱݺͼɼc ∈ Ck(K) Λ k ࠯ (k-chain) ͱݺͿɽ ͳ͓ɼk < 0, n < k ⇒ Ck(K) = 0 ͱ͢Δɽ v0 v1 v2 v3 v0 v1 v2 C0(K) = {a|v0 | + b|v1 | + c|v2 |} C1(K) = {a|v0v1 | + b|v1v2 | + c|v0v2 |} C1(K) = {a|v0v1v2 |} 15 / 43
  15. ࠯܈ ఆٛʢ࠯܈ʣ n ࣍ݩ୯ମෳମ K ͷશͯͷ k ୯ମͷू·Γ Kk =

    {σi ∈ K | dim σi = k} ʹ͍ͭͯɼKk Ͱੜ੒͞ΕΔࣗ༝ Z/2Z Ճ܈ Ck(K) = { c = nk ∑ i=1 ϵi σi ϵi ∈ Z/2Z } (3) Λ k ࠯܈ (k-chain group) ͱݺͼɼc ∈ Ck(K) Λ k ࠯ (k-chain) ͱݺͿɽ ͳ͓ɼk < 0, n < k ⇒ Ck(K) = 0 ͱ͢Δɽ • R Ճ܈ɿϕΫτϧۭؒͷҰൠԽ • ϕΫτϧͷ܎਺Λ؀ R ্ʹ੍ݶͨ͠΋ͷ • ࣗ༝Ճ܈ɿ೚ҙͷݩΛجఈͷઢܗ݁߹ͱͯ͠දͤΔՃ܈ • Z2 := Z/2Z = {[0], [1]} • ࠯܈͸ Z Ճ܈΍ R Ճ܈ͱͯ͠΋ఆٛͰ͖Δʢීว܎਺ఆཧʣ 16 / 43
  16. ڥք࡞༻ૉ ఆٛʢڥք࡞༻ૉʣ ֤ 0 ≥ k ≥ n ʹରͯ͠ɼઢܗ࡞༻ૉ ∂k

    : Ck(K) → Ck−1(K) Λ ڥք࡞༻ૉ (boundary operator) ͱݺͼɼҎԼͰఆΊΔɿ ∂k|v0 · · · vk| = k ∑ i=0 |v0 · · · vi−1vi+1 · · · vk| (4) v0 v1 v2 v3 v0 v1 v2 v0 v1 v3 v1 v2 v3 v0 v2 v3 @ |v1v2v3 | + |v0v2v3 | + |v0v1v3 | + |v0v1v2 | |v0v1v2v3 | 17 / 43
  17. ڥք࡞༻ૉ fundamental property   • ڥքͷڥք͸ͳ͍ ∂k ◦ ∂k+1

    = 0 for all k (5) • ࠯ෳମɿ࠯܈ C∗(K) ͱڥք࡞༻ૉ ∂∗ ͔ΒͳΔܥྻ 0 → Cn(K) ∂n → Cn−1(K) ∂n−1 → · · · ∂2 → C1(K) ∂1 → C0(K) → 0 (6)   @2 ! @1 ! @1@2 |v0v1v2 | = @1 (|v1v2 | + |v0v2 | + |v0v1 |) = @1 |v1v2 | + @1 |v0v2 | + @1 |v0v1 | = |v1 | + |v2 | + |v0 | + |v2 | + |v0 | + |v1 | = 0 ( * 1 + 1 = 0) ' ' 18 / 43
  18. ʮ݀ʯͱ͸ʁ • 1 ࣍ݩͷ৔߹ɿྠ͔͕ͬ͋Ε͹ʮ݀ʯʁ ʮ݀ʯͳ͠ ʮ݀ʯ͋Γ @2 ! @1 !

    ྠ͔͕ͬ͋ͬͯ ʮ݀ʯ͕͋Δ ྠ͔ͬ͸͋Δ͚Ͳ ʮ݀ʯ͸ͳ͍ ▶ 1 ࣍ݩͷʮ݀ʯͱ͸ɼڥքͷͳ͍ 1 ୯ମͷू·Γʢྠ͔ͬʣͰ͋ͬͯ 2 ୯ମͷڥքʹͳ͍ͬͯͳ͍΋ͷ ˣҰൠԽ   k ࣍ݩͷʮ݀ʯͱ͸ɼڥքͷͳ͍ k ୯ମͷू·ΓͰ͋ͬͯ k + 1 ୯ମͷڥքʹͳ͍ͬͯͳ͍΋ͷ   19 / 43
  19. ʮ݀ʯͱ͸ʁ   k ࣍ݩͷʮ݀ʯͱ͸ɼڥքͷͳ͍ k ୯ମͷू·ΓͰ͋ͬͯ k + 1

    ୯ମͷڥքʹͳ͍ͬͯͳ͍΋ͷ   • ྠମ܈ (cyclic group) • Zk (K) = Ker ∂k (K) = {c ∈ Ck (K) | ∂k c = 0} • ڥքྠମ܈ (boundary group) • Bk (K) = Im ∂k+1 (K) = {c ∈ Ck (K) | c = ∂k+1 c′, c′ ∈ Ck+1 (K)} ɹ࣍ݩͷʮ݀ʯͱ͸ɼڥքͷͳ͍ɹ୯ମͷू·ΓͰ͋ͬͯ ɹɹɹ୯ମͷڥքʹͳ͍ͬͯͳ͍΋ͷ ྠମ܈ DZDMJDHSPVQ  ڥքྠମ܈ CPVOEBSZHSPVQ  Bk(K) ⇢ Zk(K) ⇢ Ck(K) * @k @k+1 = 0 Bk+1(K) Zk+1(K) Ck+1(K) Zk(K) Ck(K) Bk(K) Bk 1(K) Zk 1(K) Ck 1(K) 0 0 0 @k+1 @k Zk(K) = Ker @k = {c 2 Ck(K) | @k c = 0} Bk(K) = Im @k+1 = {c 2 Ck(K) | c = @k+1 c0, c0 2 Ck+1(K)} 20 / 43
  20. ϗϞϩδʔ܈ ఆٛʢϗϞϩδʔ܈ʣ ୯ମෳମ K ͷ k ࣍ϗϞϩδʔ܈ (k-dimensional homology group)

    Λɼ ঎Ճ܈ Hk(K) = Zk(K)/Bk(K) = Ker ∂k/Im ∂k+1 (7) ͰఆΊΔɽ·ͨɼHk(K) ͷݩΛϗϞϩδʔྨͱݺͿɽ • k ࣍ϕον਺ βk = rank (Hk(K)) ▶ k ࣍ݩͷʮ݀ʯͷ਺Λද͢Ґ૬ෆมྔ • K ͷ֤࿈݁੒෼Λ K1, . . . , Ks ͱ͢Δͱɼશͯͷ k ʹ͍ͭͯ Hk(K) = Hk(K1) ⊕ · · · ⊕ Hk(Ks) ͕੒ཱ ▶ ୯ମෳମ K ͷϗϞϩδʔ܈͸֤࿈݁੒෼͝ͱʹٻΊΕ͹Α͍ 21 / 43
  21. ϗϞϩδʔ܈ͷܭࢉ • X = {|12|, |13|, |23|, |1|, |2|, |3|}

    • ࠯ෳମ 0 → C2(X) ∂2 → C1(X) ∂1 → C0(X) → 0 • C2 (X) = {0} • C1 (X) = {α1 |12| + α2 |13| + α3 |23| | αi ∈ Z2 } • C0 (X) = {β1 |1| + β2 |2| + β3 |3| | βi ∈ Z2 } • ڥք࡞༻ૉ ∂2 = 0, ∂1 =   1 1 0 1 0 1 0 1 1   • Z1 (X) = Ker ∂1 =   1 1 1   ≃ Z2 • B1 (X) = Im ∂2 = 0 ∴ H1(X) = Z1(X)/B1(X) ≃ Z2 22 / 43 1 2 3 1 2 3
  22. ϗϞϩδʔ܈ͷܭࢉ • X = {|123|, |12|, |13|, |23|, |1|, |2|,

    |3|} • ࠯ෳମ 0 → C2(X) ∂2 → C1(X) ∂1 → C0(X) → 0 • C2 (X) = {ϵ|123| | ϵ ∈ Z2 } • C1 (X) = {α1 |12| + α2 |13| + α3 |23| | αi ∈ Z2 } • C0 (X) = {β1 |1| + β2 |2| + β3 |3| | βi ∈ Z2 } • ڥք࡞༻ૉ ∂2 =   1 1 1   , ∂1 =   1 1 0 1 0 1 0 1 1   • Z1 (X) = Ker ∂1 =   1 1 1   ≃ Z2 • B1 (X) = Im ∂2 = Z1 (X) ∴ H1(X) = Z1(X)/B1(X) ≃ 0 23 / 43 1 2 3
  23. ิ଍ɿ޲͖෇͚ΒΕͨ୯ମ • ্هͰ͸ࣗ༝ Z2 Ճ܈ͱͯ͠ͷ࠯܈Λ΋ͱʹϗϞϩδʔ܈Λ ఆٛͨͨ͠Ίɼ୯ମͷ޲͖Λߟྀ͢Δඞཁ͕ͳ͔ͬͨ • ୯ମͷ޲͖Λߟྀ͢Δ৔߹͸ɼ࠯܈ʹ Z Ճ܈ͷߏ଄͕ೖΔ

    • ޲͖ͷҧ͍͸ϚΠφεූ߸Ͱදݱ ⟨v1 v2 v3 ⟩ = −⟨v1 v3 v2 ⟩ 2 1 3 2 1 3 hv1v2v3 i hv1v3v2 i • ޲͖෇͚ΒΕͨ୯ମ ⟨v0 · · · vk⟩ ʹର͢Δڥք࡞༻ૉ͸ҎԼͰఆٛɿ ∂k⟨v0 · · · vk⟩ = k ∑ i=0 (−1)i⟨v0 · · · vi−1vi+1 · · · vk⟩ ▶ ্ͷఆٛ͸޲͖Λߟྀͯ͠ڥքΛऔΓग़͢ૢ࡞Λදݱ 24 / 43
  24. Outline 1. τϙϩδʔ 2. ୯ମతϗϞϩδʔ • ୯ମෳମ • ந৅୯ମෳମ •

    ࠯܈ • ڥք࡞༻ૉ • ϗϞϩδʔ܈ 3. ୯ମෳମͷߏங • ຺ମఆཧ • ˇ Cech ෳମ • Vietoris-Rips ෳମ • ΞϧϑΝෳମ • ํମෳମ 4. ύʔγεςϯτϗϞϩδʔ܈ 25 / 43
  25. ୯ମෳମͷߏங • σʔλ͕༩͑ΒΕͨͱ͖ɼͲͷΑ͏ʹ୯ମෳମΛߏங͢Ε͹Α͍͔ʁ protein molecule point cloud image Data ü 

    Cechෳମ (Cech complex) ü  Vietoris-Ripsෳମ (Vietoris-Rips complex) ü  ΞϧϑΝෳମ (alpha complex) ü  ํମෳମ (cubical complex) ɾɾɾ 26 / 43
  26. ຺ମఆཧ • ͦ΋ͦ΋ɼσʔλΛ୯ମෳମͱͯ͠දݱͯ͠େৎ෉ͳͷʁ ˠ ຺ମఆཧ ఆٛʢ຺ମʣ ෦෼ू߹଒ Φ = {Bi

    ⊂ RN | i = 1, . . . , m} ͕෦෼ू߹ X ⊂ RN Λ ඃ෴͍ͯ͠Δঢ়گΛߟ͑ΔʀX = ∪ m i=1 Bi. ͜ͷͱ͖ɼந৅୯ମෳମ (V, Σ) Λ Φ ͷ຺ମ (nerve) ͱݺͼɼN(Φ) Ͱද͢ɽ V = {1, . . . , m} Σ =    {i0, . . . , ik} k ∩ j=0 Bij ̸= ϕ    27 / 43
  27. ຺ମఆཧ ຺ମఆཧ (Nerve theorem) ತด෦෼ू߹଒ Φ = {Bi ⊂ RN

    | i = 1, . . . , m} ͕෦෼ू߹ X ⊂ RN Λ ඃ෴͍ͯ͠Δঢ়گΛߟ͑ΔʀX = ∪ m i=1 Bi. ͜ͷͱ͖ɼX ͱ຺ମ N(Φ) ͸ϗϞτϐʔಉ஋ͱͳΔɽ B1 B2 B3 2 1 3 N( ) ▶ X ͷϗϞτϐʔෆมͳྔΛௐ΂Δࡍʹ͸ɼ ʢҰൠʹ X ΑΓऔΓѻ͍͕ ༰қͳʣ຺ମʹม׵͔ͯ͠Βௐ΂Ε͹ྑ͍ 28 / 43
  28. ˇ Cech ෳମ ˇ Cech ෳମ C(P, r) • RN

    ಺ͷ֤఺ xi Λத৺ͱͨ͠൒ܘ r ͷٿ Br(xi) ͷू·Γ Φ = {Br(xi) | xi ∈ P} ʹ͍ͭͯͷ຺ମ P = {xi ∈ RN | i = 1, . . . , m} Br(xi) = {x ∈ RN | ∥x − xi∥ ≤ r} Bi r 29 / 43
  29. Vietoris-Rips ෳମ Vietoris-Rips ෳମ R(P, r) • RN ಺ͷ֤఺ xi

    Λத৺ͱͨ͠൒ܘ r ͷٿ Br(xi) ͷू·Γ Φ = {Br(xi) | xi ∈ P} ʹ͍ͭͯɼ௖఺ू߹Λ V = {1, . . . , m}ɼ ୯ମͷू·ΓΛ Σ = {{i0, . . . , ik} | Bis ∩ Bit ̸= ϕ, 0 ≤ s, t ≤ k} Ͱ ఆΊͨந৅୯ମෳମ (V, Σ) • ஫ҙɿR(P, r) ͸຺ମͱͯ͠ಘΒΕΔ୯ମෳମͰ͸ͳ͍ͨΊɼ ٿͷ࿨ू߹ ∪ m i=1 Br(xi) ͱͷϗϞτϐʔಉ஋ੑ͸อূ͞Εͳ͍ Bi r 30 / 43
  30. ΞϧϑΝෳମ ΞϧϑΝෳମ α(P, r) • RN ಺ͷ֤఺ xi ʹର͢Δ൒ܘ r

    ͷٿ Br(xi) ͱϘϩϊΠྖҬ Vi = {x ∈ RN | ∥x − xi∥ ≤ ∥x − xj∥, j ̸= i} ͱͷڞ௨෦෼ Wi = Br(xi) ∩ Vi ͷू·Γ Ψ = {Wi | i = 1, . . . , m} ʹ͍ͭͯͷ຺ମ \ = Br(xi) Vi Wi ↵(P, r) 31 / 43
  31. Outline 1. τϙϩδʔ 2. ୯ମతϗϞϩδʔ • ୯ମෳମ • ந৅୯ମෳମ •

    ࠯܈ • ڥք࡞༻ૉ • ϗϞϩδʔ܈ 3. ୯ମෳମͷߏங • ຺ମఆཧ • ˇ Cech ෳମ • Vietoris-Rips ෳମ • ΞϧϑΝෳମ • ํମෳମ 4. ύʔγεςϯτϗϞϩδʔ܈ 33 / 43
  32. ύʔγεςϯτϗϞϩδʔ܈ ύʔγεςϯτϗϞϩδʔ܈   • ෳମͷύϥϝʔλมԽʹ൐͏૿େྻʢϑΟϧτϨʔγϣϯʣʹ ର͢ΔϗϞϩδʔ܈ʢ࣌ؒ࣠ + ϗϞϩδʔ܈ʣ 

     • e.g. ˇ Cech ෳମͷϑΟϧτϨʔγϣϯ C : C(P, r(0)) ⊂ C(P, r(1)) ⊂ · · · ⊂ C(P, r(5)) ⊂ · · · t = 0 t = 1 t = 2 t = 3 t = 4 t = 5 35 / 43
  33. ύʔγεςϯτϗϞϩδʔ܈ • ୯ମෳମ Kt (t = 0, 1, . .

    . ) ͷϑΟϧτϨʔγϣϯ K : K0 ⊂ K1 ⊂ · · · Kt ⊂ · · · • ࣌ࠁ t Ͱͷ୯ମෳମͷ k ୯ମͷू·Γ Kt k = {σ ∈ Kt | dim σ = k} • ୯ମ σ ∈ K ͷൃੜ࣌ࠁ T(σ) = t if σ ∈ Kt \ Kt−1 ఆٛʢϑΟϧτϨʔγϣϯ K ʹର͢Δ k ࠯܈ʣ ࣗ༝ Z2 Ճ܈ Ck(Kt) = ∑ σ∈Kt k Z2σ ͷ௚࿨ Ck(K) = ⊕ t≥0 Ck(Kt) = { (c0, c1, . . . , ct, . . . ) | ct ∈ Ck(Kt) } (8) ʹ x ͷ࡞༻ x · (c0, c1, . . . ) = (0, c0, c1, . . . ) Λಋೖ͢ΔͱɼCk(K) ͸ ࣍਺෇͖ Z2[x] Ճ܈ͱͳΔɽ͜ΕΛϑΟϧτϨʔγϣϯ K ʹର͢Δ k ࠯܈ͱݺͿɽ 36 / 43
  34. ύʔγεςϯτϗϞϩδʔ܈ • แؚࣸ૾ it : Ck(Kt) → Ck(K) it(σ) =

    (c0, c1, . . . ), ci = { σ (i = t) 0 (i ̸= t) (9) • Ck(K) ͷجఈ ξk = {eσ = iT(σ) (σ) | σ ∈ Kk} • ڥք࡞༻ૉ ∂k : Ck(K) → Ck−1(K) @k(e ) = k X i=0 ⇣ xT ( ) T ( i) ⌘ e i , 2 Kk i • ∂k−1 ◦ ∂k = 0 • Zk (K) = Ker ∂k = ⊕ t≥0 Zk (Kt) • Bk (K) = Im ∂k+1 = ⊕ t≥0 Bk (Kt) 37 / 43
  35. ύʔγεςϯτϗϞϩδʔ܈ ఆٛʢύʔγεςϯτϗϞϩδʔ܈ʣ ୯ମෳମͷϑΟϧτϨʔγϣϯ K ʹର͢Δ k ࣍ύʔγεςϯτ ϗϞϩδʔ܈ (persistent homology

    group) Hk(K) ͸ҎԼͰ༩͑ΒΕΔɿ Hk(K) = Zk(K)/Bk(K) = ⊕ t≥0 Zk(Kt)/Bk(Kt) = ⊕ t≥0 Hk(Kt) (10) • ύʔγεςϯτϗϞϩδʔ܈ͷҰҙ෼ղఆཧ; Hk(K) ≃ ⊕ s i=1 I[bi, di] • ύʔγεςϯτ۠ؒ I[b, d]ʢb: ݀ͷൃੜ࣌ࠁɼd: ݀ͷফ໓࣌ࠁʣ ▶ શͯͷ݀ͷൃੜ࣌ࠁͱফ໓࣌ࠁΛࢦఆ͢Δ͜ͱͰʢಉܕΛআ͍ͯʣ Hk(K) ΛҰҙʹදݱՄೳ 38 / 43
  36. ύʔγεςϯτϗϞϩδʔ܈ • ύʔγεςϯτϗϞϩδʔ܈ Hk(K) ͷදݱํ๏ 0 1 2 3 4

    CBSDPEF ֤ੜ੒ݩʢ݀ʣͷ CJSUI͔ΒEFBUI·Ͱ ઢΛҾ͘ 0 1 2 3 4 4 3 2 1 QFSTJTUFODFEJBHSBN CJSUI EFBUI ֤ੜ੒ݩͷCJSUI C ͱ EFBUI E Λ࣍ݩฏ໘্ͷ ఺ C E ͱͯ͠දݱ ü  ୹͍ઢˠOPJTZ ü  ௕͍ઢˠSPCVTU ü  ର֯ઢʹ͍ۙ఺ˠOPJTZ ü  ର֯ઢ͔Βԕ͍఺ˠSPCVTU t = 0 t = 1 t = 2 t = 3 t = 4 39 / 43
  37. Ԡ༻ྫɿλϯύΫ࣭ͷߏ଄ղੳ • λϯύΫ࣭ͷѹॖ཰ʹ૬ؔͷ͋ΔྔΛύʔγεςϯτਤ͔Βநग़ assumption 1 ѹॖ཰͸಺෦ͷۭಎʹؔ܎ assumption 2 assumption 3

    assumption 4 ण໋ͷ୹͍ੜ੒ݩ͸τϙϩδΧϧͳ ϊΠζͰ͋Γɼѹॖ཰ʹد༩͠ͳ͍ ີͳݪࢠ഑ஔ͸ܗঢ়͕มԽ͠ʹ͍͘
 ʢѹॖ཰΁ͷد༩͕খ͍͞ʣ ԁ౵ྖҬͷ࣠ํ޲ͷ௕͕͞௕͍৔߹ ΑΓ޿͍಺෦ྖҬΛ࣋ͭͨΊѹॖ཰ ΁ͷد༩͸େ͖͍ ୹໋ͷੜ੒ݩ ௕໋ͷੜ੒ݩ ૄͳݪࢠ഑ஔ ີͳݪࢠ഑ஔ 40 / 43
  38. Ԡ༻ྫɿλϯύΫ࣭ͷߏ଄ղੳ • લทͷԾఆΛ౿·͑ɼҎԼͷྔ Cp Λಋೖ Cp(l1, u1, l2, u2, δ)

    = |PD2(l2, u2, δ)| |PD1(l1, u1, δ)| with PDk(lk, uk, δ) = {(pb, pd) ∈ PDk | pb ∈ [lk, uk]} with Nk(δ) = {(pb, pd) ∈ PDk | pd − pb ≤ δ} • ݁ՌɿCp ͱ࣮ݧ஋ͷ૬ؔ • http://www2.math.kyushu-u.ac.jp/ ∼nishii/FujitsuWS/Hiraoka.pdf ΑΓҾ༻ 41 / 43 ѹॖ཰ C p ͷؒ
  39. Ԡ༻ྫɿλϯύΫ࣭ͷߏ଄ղੳ • λϯύΫ࣭ͷߏ଄ʹج͍ͮͯਐԽܥ౷थΛߏங • 3 छྨͷௗྨٴͼ 4 छྨͷᄡೕྨͷϔϞάϩϏϯσʔλʹ͍ͭͯ ύʔγεςϯτਤΛܭࢉ͠ɼͦͷؒͷڑ཭Λ΋ͱʹܥ౷थΛߏங •

    2 ͭͷϑΟϧτϨʔγϣϯ K, L ʹର͢Δύʔγεςϯτਤͷ ڑ཭ʢϘτϧωοΫڑ཭ʣ͸ҎԼͰܭࢉ d(K, L) = inf γ sup p∈P Dk(K) ∥p − γ(p)∥∞ where PDk (K) := PDk (K) ∪ {(a, a) | a ∈ R} • ݁Ռ 42 / 43 Πϯί ΠϯυΨϯ Ξώϧ ϊ΢αΪ ϒλ ϠΪ ωζϛ
  40. ࢀߟจݙ • ฏԬ༟ষʮλϯύΫ࣭ߏ଄ͱτϙϩδʔɿύʔγεςϯτϗϞϩδʔ ܈ೖ໳ʯڞཱग़൛, 2013. • G. Carlsson, “Topology and

    data,” Bulletin of the American Mathematical Society 46.2, pp. 255–308, 2009. • F. Chazal and B. Michel, “An introduction to topological data analysis: fundamental and practical aspects for data scientists,” arXiv preprint, arXiv:1710.04019, 2017. 43 / 43