Upgrade to Pro — share decks privately, control downloads, hide ads and more …

What is Deep Learning ?

What is Deep Learning ?

(Japanese document)
History and introductions of Neural Network,
社内ゼミでの資料です。

urakarin

May 02, 2017
Tweet

More Decks by urakarin

Other Decks in Technology

Transcript

  1. ࿩͢͜ͱɺ࿩͞ͳ͍͜ͱ • ࿩͢͜ͱ • χϡʔϥϧωοτϫʔΫͷ਺ֶతͳ࢓૊Έ • ॳظ஋ͷܾΊํɺධՁํ๏ • ύϥϝʔλྔɺܭࢉྔͷϘϦϡʔϜײ •

    ϗοτͳ࿩୊ • ࿩͞ͳ͍͜ͱ • πʔϧͷ࿩ • ਺ࣜͷ࿩ • χϡʔϥϧωοτϫʔΫҎ֎ͷػցֶश • γϯΪϡϥϦςΟͳͲͷਓ޻஌ೳͷະདྷ ग़య wedge.ismedia.jp
  2. ୅දతͳൃද Neural Networkͷ ϒϨʔΫεϧʔͱ ౙͷ࣌୅ ୅දతͳਓࡐ֫ಘ Google ͕DNN ResearchΛങऩ )JOUPO

    Google ͕ Deep MindΛങऩ Baidu ͕Institute of Deep LearningΛઃཱ "OESFX/H Facebook ͕AI Research Lab.Λઃཱ -F$VO SGD (Amari) Neocognitron (Fukushima) Boltzmann Machine (Hinton+) Conv. net (LeCun+) Sparse Coding (Olshausen&Field) 1950 1960 1970 1980 1990 2000 2010 2020 Microsoft ͕MaluubaΛങऩ #FOHJP ୈҰ࣍"*ϒʔϜ ਪ࿦ɾ୳ࡧ ୈೋ࣍"*ϒʔϜ ஌ࣝදݱ &YQFSU4ZTUFN ୈࡾ࣍"*ϒʔϜ ػցֶश ਂ૚ֶश Perceptron (Rosenblatt) Back Propagation (Rumelhart) Deep Learning (Hinton+) Big Data GPU Cloud Computing ઢܗ෼཭ෆՄೳ໰୊ YPS͕ղ͚ͳ͍ ஗͍ɺաֶशɺ 47.ਓؾ χϡʔϥϧωοτϫʔΫͷྺ࢙ NN ୈҰͷౙ NN ୈೋͷౙ
  3. ڭࢣ৴߸ ޡࠩؔ਺ ೖྗ૚ ग़ྗ૚ தؒ૚ 1 1 1 x y

    t ⇥w 4 ⇥ w3 ⇥w2 ⇥w1 x1 x2 x3 x4 ⇥w 0 ⌃f y1 y2 y3 1. ଟ૚Խ 2. ׆ੑԽؔ਺ 3. ޡࠩؔ਺ 4. ޡࠩٯ఻ൖ๏ ଟ૚ύʔηϓτϩϯʢMLPʣ
  4. ଟ૚ԽʹΑͬͯxorͷ࣮ݱ NAND OR AND s2 s1 x1 x2 y x1

    x2 s1 s2 y 0 0 1 0 0 1 0 1 1 1 0 1 1 1 1 1 1 0 1 0 = 1. ଟ૚Խ
  5. 3. ଛࣦؔ਺ ޡࠩؔ਺ʢଛࣦؔ਺ʣ 1 2 N X n=1 ky tk2

    N Y n=1 p(dn | x ) d=0/1ͷࣄޙ֬཰pʹରͯ͠࠷໬ਪఆΛߦ͏ ೋ৐ޡࠩͱ͢Δ ڭࢣ৴߸ ޡࠩؔ਺ ग़ྗ૚ y t y1 y2 y3 ճؼ ೋ஋෼ྨ ଟΫϥε෼ྨ ڭࢣ৴߸ΛOne-hotදݱͱ͠ɺ ࠷ऴஈͷ׆ੑԽؔ਺ΛιϑτϚοΫεؔ਺ͱ্ͨ͠Ͱ ަࠩΤϯτϩϐʔؔ਺
  6. ڭࢣ৴߸ ޡࠩؔ਺ ೖྗ૚ ग़ྗ૚ தؒ૚ 1 1 1 x y

    t ⇥w 4 ⇥ w3 ⇥w2 ⇥w1 x1 x2 x3 x4 ⇥w 0 ⌃f y1 y2 y3 4. ޡࠩٯ఻ൖ๏ ޡࠩٯ఻ൖ๏
  7. + ^2 x y t z @z @z @z @z

    @z @t @z @z @z @t @t @x ͨͱ͑͹ z = ( x + y )2 ͱ͍͏ࣜ͸ z = t2 t = x + y ͱ͍͏2ͭͷࣜͰߏ੒͞ΕΔɻ ࿈࠯཯ͱ͸ɺ߹੒ؔ਺ͷඍ෼ʹ͍ͭͯͷੑ࣭Ͱ͋Δ @z @x = @z @t @t @x ޡࠩٯ఻ൖ๏ 4. ޡࠩٯ఻ൖ๏
  8. ޡࠩٯ఻ൖ๏ Ճࢉϊʔυͷٯ఻ൖ + x y z + @L @z @L

    @z · 1 @L @z · 1 ৐ࢉϊʔυͷٯ఻ൖ x y z ⇥ @L @z ⇥ @L @z · x @L @z · y 4. ޡࠩٯ఻ൖ๏ 2 100 ⇥ ⇥ 200 1.1 220 1 1.1 200 110 2.2 ΓΜ͝ͷݸ਺ ফඅ੫ ɹ۩ମྫɹ
  9. Auto Encoder Deep Belief Network v3 h2 v1 h1 v2

    Visible Hidden Visible Hidden Visible Hidden RBM RBM RBM 4UBDLFE "VUP&ODPEFS "VUP&ODPEFS ࣗݾූ߸Խث "VUP&ODPEFS ࣗݾූ߸Խث "VUP&ODPEFS ࣗݾූ߸Խث "VUP&ODPEFS ࣗݾූ߸Խث ଟஈԽ ʴϩόετੑ "VUP&ODPEFS ࣗݾූ߸Խث AE %FOPJTJOH "VUP&ODPEFS DAE SAE pre-training + fine tuning ࠾༻ ֶश Input Hidden Output %FFQ#FMJFG /FUXPSL )PQpFME /FUXPSL #PMU[NBOO .BDIJOF ֬཰Ϟσϧ ܭࢉྔͷ࡟ݮ ੍໿෇͖ #PMU[NBOO .BDIJOF ੍໿෇͖ #PMU[NBOO .BDIJOF ੍໿෇͖ #PMU[NBOO .BDIJOF ੍໿෇͖ #PMU[NBOO .BDIJOF ଟஈԽ ੍໿෇͖ #PMU[NBOO .BDIJOF RBM DBN pre-training + fine tuning
  10. ୅දతͳൃද Neural Networkͷ ϒϨʔΫεϧʔͱ ౙͷ࣌୅ ୅දతͳਓࡐ֫ಘ Google ͕DNN ResearchΛങऩ )JOUPO

    Google ͕ Deep MindΛങऩ Baidu ͕Institute of Deep LearningΛઃཱ "OESFX/H Facebook ͕AI Research Lab.Λઃཱ -F$VO SGD (Amari) Neocognitron (Fukushima) Boltzmann Machine (Hinton+) Conv. net (LeCun+) Sparse Coding (Olshausen&Field) 1950 1960 1970 1980 1990 2000 2010 2020 Microsoft ͕MaluubaΛങऩ #FOJHO ୈҰ࣍"*ϒʔϜ ਪ࿦ɾ୳ࡧ ୈೋ࣍"*ϒʔϜ ஌ࣝදݱ &YQFSU4ZTUFN ୈࡾ࣍"*ϒʔϜ ػցֶश ਂ૚ֶश Perceptron (Rosenblatt) Back Propagation (Rumelhart) Deep Learning (Hinton+) Big Data GPU Cloud Computing ઢܗ෼཭ෆՄೳ໰୊ YPS͕ղ͚ͳ͍ ஗͍ɺաֶशɺ 47.ਓؾ χϡʔϥϧωοτϫʔΫͷྺ࢙ NN ୈҰͷౙ NN ୈೋͷౙ
  11. ωο τϫʔΫͷΤωϧΪʔ͕࠷খʹͳΔΑ͏ʹঢ়ଶมԽΛ܁Γฦ͢ %FFQ#FMJFG /FUXPSL )PQpFME /FUXPSL #PMU[NBOO .BDIJOF ֬཰Ϟσϧ ܭࢉྔͷ࡟ݮ

    ੍໿෇͖ #PMU[NBOO .BDIJOF ੍໿෇͖ #PMU[NBOO .BDIJOF ੍໿෇͖ #PMU[NBOO .BDIJOF ੍໿෇͖ #PMU[NBOO .BDIJOF ଟஈԽ ੍໿෇͖ #PMU[NBOO .BDIJOF RBM DBN pre-training + fine tuning هԱ1 هԱ2 هԱΛࢥ͍ग़͢ ͍ۙ͠σʔλΛ༩͑Δͱ… ը૾ΛهԱͨ͠ωοτϫʔΫ Hopfield Networkͱ͸ هԱΛߦྻܭࢉͰγϛϡϨʔτͯ͠ΈΑ͏ http://www.gaya.jp/spiking_neuron/matrix.htm
  12. %FFQ#FMJFG /FUXPSL )PQpFME /FUXPSL #PMU[NBOO .BDIJOF ֬཰Ϟσϧ ܭࢉྔͷ࡟ݮ ੍໿෇͖ #PMU[NBOO

    .BDIJOF ੍໿෇͖ #PMU[NBOO .BDIJOF ੍໿෇͖ #PMU[NBOO .BDIJOF ੍໿෇͖ #PMU[NBOO .BDIJOF ଟஈԽ ੍໿෇͖ #PMU[NBOO .BDIJOF RBM DBN pre-training + fine tuning Boltzmann Machineͱ͸ ֬཰Ϟσϧͷಋೖ Kullback LeiblerμΠόʔδΣϯε 2ͭͷۂઢʹ͍ͭͯɺॏͳΒͣʹ૬ҧʢμΠόʔδΣϯεʣ͍ͯ͠ΔྖҬʢࠩʣΛ࠷খԽ͢Δɻ ࣮ࡍͷೖྗ஋ʹ ΑΔ֬཰෼෍p ෮ݩ͞Εͨ෼෍q ࠩͷੵ෼
  13. %FFQ#FMJFG /FUXPSL )PQpFME /FUXPSL #PMU[NBOO .BDIJOF ֬཰Ϟσϧ ܭࢉྔͷ࡟ݮ ੍໿෇͖ #PMU[NBOO

    .BDIJOF ੍໿෇͖ #PMU[NBOO .BDIJOF ੍໿෇͖ #PMU[NBOO .BDIJOF ੍໿෇͖ #PMU[NBOO .BDIJOF ଟஈԽ ੍໿෇͖ #PMU[NBOO .BDIJOF RBM DBN pre-training + fine tuning ੍໿෇͖Boltzmann Machine (RBN)ͱ͸ v3 h2 v1 h1 v2 Visible Hidden
  14. %FFQ#FMJFG /FUXPSL )PQpFME /FUXPSL #PMU[NBOO .BDIJOF ֬཰Ϟσϧ ܭࢉྔͷ࡟ݮ ੍໿෇͖ #PMU[NBOO

    .BDIJOF ੍໿෇͖ #PMU[NBOO .BDIJOF ੍໿෇͖ #PMU[NBOO .BDIJOF ੍໿෇͖ #PMU[NBOO .BDIJOF ଟஈԽ ੍໿෇͖ #PMU[NBOO .BDIJOF RBM DBN pre-training + fine tuning Deep Belief Network (DBN)ͱ͸ Visible Hidden Visible Hidden Visible Hidden RBM RBM RBM pre-training(ڭࢣͳ͠) + fine tuning (ڭࢣ͋Γ)
  15. Auto Encoder Deep Belief Network v3 h2 v1 h1 v2

    Visible Hidden Visible Hidden Visible Hidden RBM RBM RBM 4UBDLFE "VUP&ODPEFS "VUP&ODPEFS ࣗݾූ߸Խث "VUP&ODPEFS ࣗݾූ߸Խث "VUP&ODPEFS ࣗݾූ߸Խث "VUP&ODPEFS ࣗݾූ߸Խث ଟஈԽ ʴϩόετੑ "VUP&ODPEFS ࣗݾූ߸Խث AE %FOPJTJOH "VUP&ODPEFS DAE SAE pre-training + fine tuning ࠾༻ ֶश Input Hidden Output %FFQ#FMJFG /FUXPSL )PQpFME /FUXPSL #PMU[NBOO .BDIJOF ֬཰Ϟσϧ ܭࢉྔͷ࡟ݮ ੍໿෇͖ #PMU[NBOO .BDIJOF ੍໿෇͖ #PMU[NBOO .BDIJOF ੍໿෇͖ #PMU[NBOO .BDIJOF ੍໿෇͖ #PMU[NBOO .BDIJOF ଟஈԽ ੍໿෇͖ #PMU[NBOO .BDIJOF RBM DBN pre-training + fine tuning
  16. 4UBDLFE "VUP&ODPEFS "VUP&ODPEFS ࣗݾූ߸Խث "VUP&ODPEFS ࣗݾූ߸Խث "VUP&ODPEFS ࣗݾූ߸Խث "VUP&ODPEFS ࣗݾූ߸Խث

    ଟஈԽ ʴϩόετੑ "VUP&ODPEFS ࣗݾූ߸Խث AE %FOPJTJOH "VUP&ODPEFS DAE SAE pre-training + fine tuning ࠾༻ ֶश Input Hidden Output Auto Encoder (AE)ͱ͸
  17. 4UBDLFE "VUP&ODPEFS "VUP&ODPEFS ࣗݾූ߸Խث "VUP&ODPEFS ࣗݾූ߸Խث "VUP&ODPEFS ࣗݾූ߸Խث "VUP&ODPEFS ࣗݾූ߸Խث

    ଟஈԽ ʴϩόετੑ "VUP&ODPEFS ࣗݾූ߸Խث AE %FOPJTJOH "VUP&ODPEFS DAE SAE pre-training + fine tuning Denoising Auto Encoder (DAE)ͱ͸ ࠾༻ ֶश Input Hidden Output ϊΠζ
  18. 4UBDLFE "VUP&ODPEFS "VUP&ODPEFS ࣗݾූ߸Խث "VUP&ODPEFS ࣗݾූ߸Խث "VUP&ODPEFS ࣗݾූ߸Խث "VUP&ODPEFS ࣗݾූ߸Խث

    ଟஈԽ ʴϩόετੑ "VUP&ODPEFS ࣗݾූ߸Խث AE %FOPJTJOH "VUP&ODPEFS DAE SAE pre-training + fine tuning Stacked Auto Encoder (SAE)ͱ͸
  19. Auto Encoder Deep Belief Network v3 h2 v1 h1 v2

    Visible Hidden Visible Hidden Visible Hidden RBM RBM RBM 4UBDLFE "VUP&ODPEFS "VUP&ODPEFS ࣗݾූ߸Խث "VUP&ODPEFS ࣗݾූ߸Խث "VUP&ODPEFS ࣗݾූ߸Խث "VUP&ODPEFS ࣗݾූ߸Խث ଟஈԽ ʴϩόετੑ "VUP&ODPEFS ࣗݾූ߸Խث AE %FOPJTJOH "VUP&ODPEFS DAE SAE pre-training + fine tuning ࠾༻ ֶश Input Hidden Output %FFQ#FMJFG /FUXPSL )PQpFME /FUXPSL #PMU[NBOO .BDIJOF ֬཰Ϟσϧ ܭࢉྔͷ࡟ݮ ੍໿෇͖ #PMU[NBOO .BDIJOF ੍໿෇͖ #PMU[NBOO .BDIJOF ੍໿෇͖ #PMU[NBOO .BDIJOF ੍໿෇͖ #PMU[NBOO .BDIJOF ଟஈԽ ੍໿෇͖ #PMU[NBOO .BDIJOF RBM DBN pre-training + fine tuning
  20. • DropOut (Drop Connect) • ΞϯαϯϒϧֶशʹରԠ • ਖ਼ଇԽ • Weight

    Decayʢޡࠩؔ਺ʹL2ϊϧϜΛՃ͑Δʣ • εύʔεਖ਼ଇԽ • σʔλ֦ுʢϊΠζɺฏߦҠಈɺճసɺ৭ʣ ͦͷଞͷ޻෉
  21. • ֤૚ͷχϡʔϩϯ਺ • όοναΠζ • ֶश܎਺ɺֶश܎਺ͷมԽ཰ • Weight decayʢՙॏݮਰʣ •

    DropOut཰ • ͳͲ ϋΠύʔύϥϝʔλ NNʹ͸ɺॏΈ΍όΠΞεύϥϝʔλͱ͸ผʹɺ ਓ͕ઃఆ͢΂͖ϋΠύʔύϥϝʔλ͕ଘࡏ͢Δɻ ύϥϝʔλܾఆʹ͸ଟ͘ͷࢼߦࡨޡ͕൐͍ɺ Ϟσϧͷੑೳʹ΋େ͖͘Өڹ͢Δɻ • ઐ༻ͷݕূσʔλΛ༻ҙ͢Δ • ܇࿅σʔλ΍ςετσʔλΛ࢖ͬͯੑೳධՁΛͯ͠͸͍͚ͳ͍ • ର਺εέʔϧͷൣғ͔ΒϥϯμϜʹαϯϓϦϯάͯ͠ධՁ͠ɺ
 ൣғΛߜΓࠐΜͰ͍͖ɺ࠷ޙʹͻͱͭΛϐοΫΞοϓ͢Δ σʔληοτ ܇࿅σʔλ ςετσʔλ ݕূσʔλ ֶश༻ ֶश݁Ռͷ ධՁ༻ ϋΠύʔύϥϝʔλͷධՁ༻
  22. ܇࿅σʔλ ܇࿅σʔλ ܇࿅σʔλ ܇࿅σʔλ ςετσʔλ ܇࿅σʔλ ܇࿅σʔλ ܇࿅σʔλ ςετσʔλ ܇࿅σʔλ

    ܇࿅σʔλ ܇࿅σʔλ ςετσʔλ ܇࿅σʔλ ܇࿅σʔλ ܇࿅σʔλ ςετσʔλ ܇࿅σʔλ ܇࿅σʔλ ܇࿅σʔλ ςετσʔλ ܇࿅σʔλ ܇࿅σʔλ ܇࿅σʔλ ܇࿅σʔλ ݕূσʔλ ݕূσʔλ ݕূσʔλ ݕূσʔλ ݕূσʔλ ϗʔϧυΞ΢τݕূ K෼ׂަࠩݕূ
 (Cross Validation) ੑೳධՁ
  23. TP rate: ཅੑΛཅੑͱ൑அׂͨ͠߹ FP rate: ӄੑΛཅੑͱ൑அׂͨ͠߹ = = ROCۂઢͱAUC ROC:Receiver

    Operating Characteristic ʢड৴ऀૢ࡞ಛੑʣ AUC:Area under the curve ʢROCۂઢԼ໘ੵʣ Predicted Condition Positive Negative True Condition Positive TP FN (type II error) Negative FP (Type I error) TN True Positive True Negative False Positive False Negative AUC
  24. True Positive True Negative False Positive False Negative ࠶ݱ཰: ཅੑΛཅੑͱ൑அׂͨ͠߹

    ʢRecallʣ = ద߹཰: ཅੑͱ༧ଌͨ͠σʔλͷ͏ͪɼ࣮ࡍʹཅੑͰ͋Δ΋ͷͷׂ߹ = ʢPrecisionʣ F஋: F஋ͷ࠷େ஋͸͓͓ΉͶ෼ذ఺ਫ਼౓ͱҰக͢Δɻ ௐ࿨ฏۉɿٯ਺ͷฏۉͷٯ਺ http://www004.upp.so-net.ne.jp/s_honma/mean/harmony2.htm Predicted Condition Positive Negative True Condition Positive TP FN (type II error) Negative FP (Type I error) TN
  25. ·ͱΊ • Deep LearningͱҰޱʹݴͬͯ΋ɺٕज़΍༻్͸༷ʑ • ը૾ೝࣝʢCNNʣ, ࣗવݴޠʢRNNʣ, 
 ਂ૚ੜ੒ʢVAE, GANʣ,

    ڧԽֶशʢDQNʣ, … • ଞ෼໺ͷٕज़΍ͪΐͬͱͨ͠޻෉ͳͲɺΞϓϩʔνํ๏ʹؔͯ͠ϒϧʔΦʔγϟϯͳ ෼໺ • 2014-2015ͷ2೥ؒͰɺ1500΋ͷؔ࿈࿦จ • CNN + RNNͷΑ͏ͳɺֆʴԻɺݴ༿ʴֆɺηϯαʔ஋ʴจষɺͳͲɺ͜Ε·Ͱ༥߹ Ͱ͖ͳ͔ͬͨσʔλ͕༥߹͢Δ͜ͱͰ৽͍͠Ձ஋ΛੜΈग़͢༧ײ
  26. ࢀߟࢿྉ • ॻ੶ • θϩ͔Β࡞ΔDeep Learning ―PythonͰֶͿσΟʔϓϥʔχϯάͷཧ࿦ͱ࣮૷ http://amzn.asia/2CTyY4U • ػցֶशͷͨΊͷ֬཰ͱ౷ܭ

    (ػցֶशϓϩϑΣογϣφϧγϦʔζ) http://amzn.asia/5SyEZVV • ΦϯϥΠϯػցֶश (ػցֶशϓϩϑΣογϣφϧγϦʔζ) http://amzn.asia/2kli98b • ΠϥετͰֶͿ σΟʔϓϥʔχϯά (KS৘ใՊֶઐ໳ॻ) http://amzn.asia/8Kz11LV • ΠϥετͰֶͿ ػցֶश ࠷খೋ৐๏ʹΑΔࣝผϞσϧֶशΛத৺ʹ (KS৘ใՊֶઐ໳ॻ) http://amzn.asia/6Zlo0pt • ਂ૚ֶश (ػցֶशϓϩϑΣογϣφϧγϦʔζ) http://amzn.asia/hZqrQ2w • ChainerʹΑΔ࣮ફਂ૚ֶश http://amzn.asia/5xDfvVJ • ࣮૷σΟʔϓϥʔχϯά http://amzn.asia/7YP7FPh • ͜Ε͔ΒͷڧԽֶश http://amzn.asia/gHUDp81 • ITΤϯδχΞͷͨΊͷػցֶशཧ࿦ೖ໳ http://amzn.asia/7SgiMwN • ҟৗݕ஌ͱมԽݕ஌ (ػցֶशϓϩϑΣογϣφϧγϦʔζ) http://amzn.asia/6RC0jbt • PythonʹΑΔσʔλ෼ੳೖ໳ ―NumPyɺpandasΛ࢖ͬͨσʔλॲཧ http://amzn.asia/4f2ATnL • URL / SlideShare / pdf • ʢଟ͗ͯ͢লུʣ