Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Amazon Rekognitionで 「信玄餅きなこ問題」を解決する
Search
Sponsored
·
Your Podcast. Everywhere. Effortlessly.
Share. Educate. Inspire. Entertain. You do you. We'll handle the rest.
→
usanchuu
February 14, 2026
Technology
1
100
Amazon Rekognitionで 「信玄餅きなこ問題」を解決する
2026/02/14 JAWS-UG山梨 【第10回】勉強会 での登壇資料です。
usanchuu
February 14, 2026
Tweet
Share
More Decks by usanchuu
See All by usanchuu
Amazon S3 Vectorsを使って資格勉強用AIエージェントを構築してみた
usanchuu
4
470
Reachability Analyzer VS Kiro CLI ~ネットワークがつながらないとき、どっちを使う?~
usanchuu
1
55
Other Decks in Technology
See All in Technology
Red Hat OpenStack Services on OpenShift
tamemiya
0
140
GitHub Copilot CLI を使いやすくしよう
tsubakimoto_s
0
120
Agent Skils
dip_tech
PRO
0
150
ランサムウェア対策としてのpnpm導入のススメ
ishikawa_satoru
0
240
ブロックテーマ、WordPress でウェブサイトをつくるということ / 2026.02.07 Gifu WordPress Meetup
torounit
0
210
【Ubie】AIを活用した広告アセット「爆速」生成事例 | AI_Ops_Community_Vol.2
yoshiki_0316
1
120
Oracle Cloud Observability and Management Platform - OCI 運用監視サービス概要 -
oracle4engineer
PRO
2
14k
Greatest Disaster Hits in Web Performance
guaca
0
310
AWS DevOps Agent x ECS on Fargate検証 / AWS DevOps Agent x ECS on Fargate
kinunori
2
270
CDK対応したAWS DevOps Agentを試そう_20260201
masakiokuda
1
490
プレビュー版のDevOpsエージェントを現段階で触ってみた
ad_motsu
1
110
SREチームをどう作り、どう育てるか ― Findy横断SREのマネジメント
rvirus0817
0
380
Featured
See All Featured
The Art of Programming - Codeland 2020
erikaheidi
57
14k
Fight the Zombie Pattern Library - RWD Summit 2016
marcelosomers
234
17k
職位にかかわらず全員がリーダーシップを発揮するチーム作り / Building a team where everyone can demonstrate leadership regardless of position
madoxten
58
50k
The Pragmatic Product Professional
lauravandoore
37
7.1k
Max Prin - Stacking Signals: How International SEO Comes Together (And Falls Apart)
techseoconnect
PRO
0
92
AI Search: Where Are We & What Can We Do About It?
aleyda
0
7k
The AI Search Optimization Roadmap by Aleyda Solis
aleyda
1
5.3k
Jamie Indigo - Trashchat’s Guide to Black Boxes: Technical SEO Tactics for LLMs
techseoconnect
PRO
0
67
Redefining SEO in the New Era of Traffic Generation
szymonslowik
1
220
Measuring Dark Social's Impact On Conversion and Attribution
stephenakadiri
1
130
B2B Lead Gen: Tactics, Traps & Triumph
marketingsoph
0
58
Color Theory Basics | Prateek | Gurzu
gurzu
0
200
Transcript
Amazon Rekognitionで 「信玄餅きなこ問題」を解決する 2026/02/14 JAWS-UG山梨 【第10回】勉強会 藤井 ひかり
① 検証内容の背景と「Amazon Rekognition」についてご紹介 ② 機械学習未経験者が、実際に「Amazon Rekognition」を 利用して「信玄餅きなこ問題」を解決してみる 今回の内容
発表者について フジイ ヒカリ と申します・x・ 社会人1年目:SIerのアーキテクチャチームでSEしてます AWSについて 保有資格:CLF,AIF,SAA ★昨年12月開催のJAWS-UG Presents -
AI Builders Dayを きっかけにAWSに興味をもち、現在絶賛勉強中です! X:@usanchuu
LT内容の背景:山梨×AWS 信玄餅の「きなこ問題」をAmazon Rekognitionで解決!
① 信玄餅と「Amazon Rekognition」についてご紹介
山梨県を代表する銘菓で柔らかい餅にきな粉をまぶし、黒蜜を かけて食べる和菓子 →きなこがこぼれてたべるのがむずかしい! 山梨の名産品 信玄餅の「きなこ問題」とは ① 信玄餅と「Amazon Rekognition」についてご紹介
おもに2種類の食べ方がある ① 信玄餅と「Amazon Rekognition」についてご紹介 ②風呂敷に出して食べる ①そのまま食べる 画像認識でどちらがきれいに食べられるか検証!
Amazon Rekognitionとは? ① 信玄餅と「Amazon Rekognition」についてご紹介 ★画像認識と動画分析の自動化サービス →機械学習の経験がなくても利用できる →事前にトレーニングされたAPIが提供されている →APIのカスタマイズも可能 ★「カスタムラベル」機能
:自動機械学習 (AutoML) によってカスタムオブジェクトを検出 →わずか10画像でモデルをトレーニング https://aws.amazon.com/jp/rekognition/ より
② Amazon Rekognitionを利用して 「信玄餅きなこ問題」を解決
検証環境構成 ② Amazon Rekognitionを利用して「信玄餅きなこ問題」を解決 S3に学習用画像をアップロード▶Amazon Rekognitionで学習 ▶Lambdaで判定用関数を作成▶テスト ※次のスライドで食べさし の写真がでます 苦手な方がいらっしゃった
ら申し訳ございません…
Birthday Cakeと判定された… 手順1:Amazon Rekognition汎用モデルを使ってみる ② Amazon Rekognitionを利用して「信玄餅きなこ問題」を解決 デモ>ラベル検出 でローカルから写真をアップロードするだけで 検出結果を表示してくれる!
手順1:Amazon Rekognitionカスタムモデルを作成する ② Amazon Rekognitionを利用して「信玄餅きなこ問題」を解決 ※次のスライドで食べさしの写真がでます。苦手 な方がいらっしゃったら申し訳ございません…
手順1:Amazon Rekognitionカスタムモデルを作成する ② Amazon Rekognitionを利用して「信玄餅きなこ問題」を解決 ・データセットの作成 ・学習用の画像をアップロード したS3バケットをデータセット に登録
▼ ・ラベルを作成 ・wrapping cloth(風呂敷) ・kinako(きなこ) ▼ ・1枚ずつラベルに該当するオブ ジェクトを囲む
手順1:Amazon Rekognitionカスタムモデルを作成する ② Amazon Rekognitionを利用して「信玄餅きなこ問題」を解決 ・モデルを使用して検証 ・Amazon CLI上に検証したい 画像をアップロード
▼ ・画像分析APIコードを実行 ★信頼度スコアがデフォルトで は50%になっているため調整 ▼ ・設定したラベルの物体の座標 データが出力される
手順2:Lambdaで信玄餅マスター判定ロジックを実装 ② Amazon Rekognitionを利用して「信玄餅きなこ問題」を解決 def 判定ロジック(きな粉, 風呂敷): # 1. 物理判定:そもそもはみ出していな
いか? if きな粉の外側 > 風呂敷の外側: return "OUT (物理的にこぼれてい る)" # 2. 美学判定:ギリギリすぎないか? margin = 0.01 # 安全マージン 1% if 風呂敷のフチまでの距離 < margin: return " 🚨OUT (こぼれています)" return " ✅SAFE (信玄餅マスター)"
② Amazon Rekognitionを利用して「信玄餅きなこ問題」を解決 case2:風呂敷に出す case1:そのまま 手順2:Lambdaで信玄餅マスター判定ロジックを実装
まとめ ★汎用モデルでうまく検出できないニッチなオブジェクトはカスタムラベル で解決できる! 機械学習経験がなくてもAmazon Rekognitionは使える! ★単なる検知だけでなく、座標を使えばロジックが組める! 身近な問題も解決できるポテンシャルがある!