Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
measuring api performance using druid
Search
Ananth Packkildurai
November 28, 2017
Programming
0
1.6k
measuring api performance using druid
Druid with auto scale, monitoring metrics to build trust with our clients and wishlist from Druid.
Ananth Packkildurai
November 28, 2017
Tweet
Share
More Decks by Ananth Packkildurai
See All by Ananth Packkildurai
Data Contracts & Domain Ownership
vananth22
0
96
Data Catalogs - Rebuild the Broken Promise
vananth22
0
82
Functional Data Engineering - A Blueprint for adopting functional principles in data pipeline
vananth22
0
510
Back To The Future: Emerging Trends in Data Engineering
vananth22
0
1.2k
Murron: A Reliable Monitoring Pipeline
vananth22
0
380
The_journey_towards_Pinot.pdf
vananth22
0
210
Reliable_Event_Pipeline___scale.pdf
vananth22
0
180
Operating Data Pipeline with Airflow @ Slack
vananth22
1
2.4k
Streaming data pipelines @ Slack
vananth22
2
2.4k
Other Decks in Programming
See All in Programming
SLI/SLOの設定を進めるその前に アラート品質の改善に取り組んだ話
tanden
2
630
リアクティブシステムの変遷から理解するalien-signals / Learning alien-signals from the evolution of reactive systems
yamanoku
1
190
2025/3/18 サービスの成長で生じる幅広いパフォーマンスの問題を、 AIで手軽に解決する
shirahama_x
0
150
Go1.24で testing.B.Loopが爆誕
kuro_kurorrr
0
140
令和トラベルにおけるコンテンツ生成AIアプリケーション開発の実践
ippo012
1
250
AtCoder Heuristic First-step Vol.1 講義スライド
terryu16
2
940
Node.js, Deno, Bun 最新動向とその所感について
yosuke_furukawa
PRO
6
3k
いまさら聞けない生成AI入門: 「生成AIを高速キャッチアップ」
soh9834
11
3.2k
OpenTelemetryを活用したObservability入門 / Introduction to Observability with OpenTelemetry
seike460
PRO
0
190
Devinのメモリ活用の学びを自社サービスにどう組み込むか?
itarutomy
0
1.2k
読もう! Android build ドキュメント
andpad
1
190
英語文法から学ぶ、クリーンな設計の秘訣
newnomad
1
260
Featured
See All Featured
Templates, Plugins, & Blocks: Oh My! Creating the theme that thinks of everything
marktimemedia
30
2.3k
Measuring & Analyzing Core Web Vitals
bluesmoon
6
320
GraphQLの誤解/rethinking-graphql
sonatard
69
10k
Optimising Largest Contentful Paint
csswizardry
34
3.1k
Performance Is Good for Brains [We Love Speed 2024]
tammyeverts
8
690
Practical Orchestrator
shlominoach
186
10k
Being A Developer After 40
akosma
89
590k
Build The Right Thing And Hit Your Dates
maggiecrowley
34
2.6k
Practical Tips for Bootstrapping Information Extraction Pipelines
honnibal
PRO
14
1.1k
Building Better People: How to give real-time feedback that sticks.
wjessup
367
19k
Producing Creativity
orderedlist
PRO
344
40k
Facilitating Awesome Meetings
lara
53
6.3k
Transcript
Ananth Packkildurai November 28, 2017 1 Measuring Slack API performance
using Druid
Public launch: 2014 800+ employees across 7 countries worldwide HQ
in San Francisco Diverse set of industries including software/technology, retail, media, telecom and professional services. About Slack
An unprecedented adoption rate
Agenda 1. A bit history. 2. Druid infrastructure & usecases
3. Challenges.
A bit history
March 2016 5 350+ 2M Data Engineers Slack employees Active
users
October 2017 10 800+ 6M Data Engineers Slack employees Active
users
Data usage 1 in 3 per week 500+ tables 400k
access data warehouse Tables Events per sec
It is all about Slogs
Well, not exactly
Slog
Slog
Druid infrastructure & usecases
What can go wrong?
We want more...
Performance & Experimentation • Engineering & CE team should be
able to detect the performance bottleneck proactively. • Engineers should be able to see their experimentation performance in near real-time.
Near Real time Pipeline
Keep the load in DW Kafka predictable. More comfortable to
upgrade and verify newer Kafka version. Smaller Kafka cluster is relatively more straightforward to operate. Why Analytics Kafka
Druid Architecture
Middle manager Autoscale based on number of running tasks. Historical
node autoscale based on the segment size. Fault tolerance deployment for overlord & Coordinator Brokers autoscale and load balanced by ELB. Druid Architecture
Challenges
Cascading failures
Forward Index fields
SQL
Bridge the gap between batch and realtime tables.
Thank You! 26