Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
measuring api performance using druid
Search
Ananth Packkildurai
November 28, 2017
Programming
0
1.7k
measuring api performance using druid
Druid with auto scale, monitoring metrics to build trust with our clients and wishlist from Druid.
Ananth Packkildurai
November 28, 2017
Tweet
Share
More Decks by Ananth Packkildurai
See All by Ananth Packkildurai
Data Contracts & Domain Ownership
vananth22
0
130
Data Catalogs - Rebuild the Broken Promise
vananth22
0
88
Functional Data Engineering - A Blueprint for adopting functional principles in data pipeline
vananth22
0
590
Back To The Future: Emerging Trends in Data Engineering
vananth22
0
1.3k
Murron: A Reliable Monitoring Pipeline
vananth22
0
420
The_journey_towards_Pinot.pdf
vananth22
0
240
Reliable_Event_Pipeline___scale.pdf
vananth22
0
220
Operating Data Pipeline with Airflow @ Slack
vananth22
1
2.6k
Streaming data pipelines @ Slack
vananth22
2
2.5k
Other Decks in Programming
See All in Programming
コマンドとリード間の連携に対する脅威分析フレームワーク
pandayumi
1
440
ゆくKotlin くるRust
exoego
1
220
MDN Web Docs に日本語翻訳でコントリビュート
ohmori_yusuke
0
630
プロダクトオーナーから見たSOC2 _SOC2ゆるミートアップ#2
kekekenta
0
170
AI 駆動開発ライフサイクル(AI-DLC):ソフトウェアエンジニアリングの再構築 / AI-DLC Introduction
kanamasa
11
6.2k
TerraformとStrands AgentsでAmazon Bedrock AgentCoreのSSO認証付きエージェントを量産しよう!
neruneruo
4
2.6k
責任感のあるCloudWatchアラームを設計しよう
akihisaikeda
3
140
生成AIを使ったコードレビューで定性的に品質カバー
chiilog
0
150
ZJIT: The Ruby 4 JIT Compiler / Ruby Release 30th Anniversary Party
k0kubun
1
390
ELYZA_Findy AI Engineering Summit登壇資料_AIコーディング時代に「ちゃんと」やること_toB LLMプロダクト開発舞台裏_20251216
elyza
2
1.4k
Data-Centric Kaggle
isax1015
2
740
re:Invent 2025 トレンドからみる製品開発への AI Agent 活用
yoskoh
0
710
Featured
See All Featured
My Coaching Mixtape
mlcsv
0
44
The #1 spot is gone: here's how to win anyway
tamaranovitovic
2
920
Designing Experiences People Love
moore
144
24k
Getting science done with accelerated Python computing platforms
jacobtomlinson
1
110
The SEO identity crisis: Don't let AI make you average
varn
0
62
Why You Should Never Use an ORM
jnunemaker
PRO
61
9.7k
The untapped power of vector embeddings
frankvandijk
1
1.6k
Producing Creativity
orderedlist
PRO
348
40k
Testing 201, or: Great Expectations
jmmastey
46
8k
Exploring the relationship between traditional SERPs and Gen AI search
raygrieselhuber
PRO
2
3.6k
Bridging the Design Gap: How Collaborative Modelling removes blockers to flow between stakeholders and teams @FastFlow conf
baasie
0
440
Claude Code のすすめ
schroneko
67
210k
Transcript
Ananth Packkildurai November 28, 2017 1 Measuring Slack API performance
using Druid
Public launch: 2014 800+ employees across 7 countries worldwide HQ
in San Francisco Diverse set of industries including software/technology, retail, media, telecom and professional services. About Slack
An unprecedented adoption rate
Agenda 1. A bit history. 2. Druid infrastructure & usecases
3. Challenges.
A bit history
March 2016 5 350+ 2M Data Engineers Slack employees Active
users
October 2017 10 800+ 6M Data Engineers Slack employees Active
users
Data usage 1 in 3 per week 500+ tables 400k
access data warehouse Tables Events per sec
It is all about Slogs
Well, not exactly
Slog
Slog
Druid infrastructure & usecases
What can go wrong?
We want more...
Performance & Experimentation • Engineering & CE team should be
able to detect the performance bottleneck proactively. • Engineers should be able to see their experimentation performance in near real-time.
Near Real time Pipeline
Keep the load in DW Kafka predictable. More comfortable to
upgrade and verify newer Kafka version. Smaller Kafka cluster is relatively more straightforward to operate. Why Analytics Kafka
Druid Architecture
Middle manager Autoscale based on number of running tasks. Historical
node autoscale based on the segment size. Fault tolerance deployment for overlord & Coordinator Brokers autoscale and load balanced by ELB. Druid Architecture
Challenges
Cascading failures
Forward Index fields
SQL
Bridge the gap between batch and realtime tables.
Thank You! 26