Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
measuring api performance using druid
Search
Ananth Packkildurai
November 28, 2017
Programming
0
1.7k
measuring api performance using druid
Druid with auto scale, monitoring metrics to build trust with our clients and wishlist from Druid.
Ananth Packkildurai
November 28, 2017
Tweet
Share
More Decks by Ananth Packkildurai
See All by Ananth Packkildurai
Data Contracts & Domain Ownership
vananth22
0
130
Data Catalogs - Rebuild the Broken Promise
vananth22
0
86
Functional Data Engineering - A Blueprint for adopting functional principles in data pipeline
vananth22
0
590
Back To The Future: Emerging Trends in Data Engineering
vananth22
0
1.3k
Murron: A Reliable Monitoring Pipeline
vananth22
0
420
The_journey_towards_Pinot.pdf
vananth22
0
230
Reliable_Event_Pipeline___scale.pdf
vananth22
0
220
Operating Data Pipeline with Airflow @ Slack
vananth22
1
2.6k
Streaming data pipelines @ Slack
vananth22
2
2.5k
Other Decks in Programming
See All in Programming
re:Invent 2025 のイケてるサービスを紹介する
maroon1st
0
160
それ、本当に安全? ファイルアップロードで見落としがちなセキュリティリスクと対策
penpeen
4
970
ZJIT: The Ruby 4 JIT Compiler / Ruby Release 30th Anniversary Party
k0kubun
1
310
DevFest Android in Korea 2025 - 개발자 커뮤니티를 통해 얻는 가치
wisemuji
0
180
LLM Çağında Backend Olmak: 10 Milyon Prompt'u Milisaniyede Sorgulamak
selcukusta
0
140
QAフローを最適化し、品質水準を満たしながらリリースまでの期間を最短化する #RSGT2026
shibayu36
0
1k
C-Shared Buildで突破するAI Agent バックテストの壁
po3rin
0
430
MDN Web Docs に日本語翻訳でコントリビュート
ohmori_yusuke
0
180
20251212 AI 時代的 Legacy Code 營救術 2025 WebConf
mouson
0
240
Graviton と Nitro と私
maroon1st
0
160
Kotlin Multiplatform Meetup - Compose Multiplatform 외부 의존성 아키텍처 설계부터 운영까지
wisemuji
0
150
Canon EOS R50 V と R5 Mark II 購入でみえてきた最近のデジイチ VR180 事情、そして VR180 静止画に活路を見出すまで
karad
0
140
Featured
See All Featured
Discover your Explorer Soul
emna__ayadi
2
1k
Game over? The fight for quality and originality in the time of robots
wayneb77
1
74
Easily Structure & Communicate Ideas using Wireframe
afnizarnur
194
17k
Fantastic passwords and where to find them - at NoRuKo
philnash
52
3.5k
GitHub's CSS Performance
jonrohan
1032
470k
Ecommerce SEO: The Keys for Success Now & Beyond - #SERPConf2024
aleyda
1
1.8k
SEO for Brand Visibility & Recognition
aleyda
0
4.1k
コードの90%をAIが書く世界で何が待っているのか / What awaits us in a world where 90% of the code is written by AI
rkaga
58
41k
Sam Torres - BigQuery for SEOs
techseoconnect
PRO
0
150
Leveraging Curiosity to Care for An Aging Population
cassininazir
1
140
We Are The Robots
honzajavorek
0
130
Are puppies a ranking factor?
jonoalderson
0
2.6k
Transcript
Ananth Packkildurai November 28, 2017 1 Measuring Slack API performance
using Druid
Public launch: 2014 800+ employees across 7 countries worldwide HQ
in San Francisco Diverse set of industries including software/technology, retail, media, telecom and professional services. About Slack
An unprecedented adoption rate
Agenda 1. A bit history. 2. Druid infrastructure & usecases
3. Challenges.
A bit history
March 2016 5 350+ 2M Data Engineers Slack employees Active
users
October 2017 10 800+ 6M Data Engineers Slack employees Active
users
Data usage 1 in 3 per week 500+ tables 400k
access data warehouse Tables Events per sec
It is all about Slogs
Well, not exactly
Slog
Slog
Druid infrastructure & usecases
What can go wrong?
We want more...
Performance & Experimentation • Engineering & CE team should be
able to detect the performance bottleneck proactively. • Engineers should be able to see their experimentation performance in near real-time.
Near Real time Pipeline
Keep the load in DW Kafka predictable. More comfortable to
upgrade and verify newer Kafka version. Smaller Kafka cluster is relatively more straightforward to operate. Why Analytics Kafka
Druid Architecture
Middle manager Autoscale based on number of running tasks. Historical
node autoscale based on the segment size. Fault tolerance deployment for overlord & Coordinator Brokers autoscale and load balanced by ELB. Druid Architecture
Challenges
Cascading failures
Forward Index fields
SQL
Bridge the gap between batch and realtime tables.
Thank You! 26