Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
measuring api performance using druid
Search
Sponsored
·
Your Podcast. Everywhere. Effortlessly.
Share. Educate. Inspire. Entertain. You do you. We'll handle the rest.
→
Ananth Packkildurai
November 28, 2017
Programming
0
1.7k
measuring api performance using druid
Druid with auto scale, monitoring metrics to build trust with our clients and wishlist from Druid.
Ananth Packkildurai
November 28, 2017
Tweet
Share
More Decks by Ananth Packkildurai
See All by Ananth Packkildurai
Data Contracts & Domain Ownership
vananth22
0
130
Data Catalogs - Rebuild the Broken Promise
vananth22
0
88
Functional Data Engineering - A Blueprint for adopting functional principles in data pipeline
vananth22
0
590
Back To The Future: Emerging Trends in Data Engineering
vananth22
0
1.3k
Murron: A Reliable Monitoring Pipeline
vananth22
0
420
The_journey_towards_Pinot.pdf
vananth22
0
240
Reliable_Event_Pipeline___scale.pdf
vananth22
0
220
Operating Data Pipeline with Airflow @ Slack
vananth22
1
2.6k
Streaming data pipelines @ Slack
vananth22
2
2.5k
Other Decks in Programming
See All in Programming
Honoを使ったリモートMCPサーバでAIツールとの連携を加速させる!
tosuri13
1
170
CSC307 Lecture 04
javiergs
PRO
0
660
疑似コードによるプロンプト記述、どのくらい正確に実行される?
kokuyouwind
0
380
OCaml 5でモダンな並列プログラミングを Enjoyしよう!
haochenx
0
140
Vibe codingでおすすめの言語と開発手法
uyuki234
0
220
今こそ知るべき耐量子計算機暗号(PQC)入門 / PQC: What You Need to Know Now
mackey0225
3
370
CSC307 Lecture 03
javiergs
PRO
1
490
AIと一緒にレガシーに向き合ってみた
nyafunta9858
0
170
【卒業研究】会話ログ分析によるユーザーごとの関心に応じた話題提案手法
momok47
0
190
React 19でつくる「気持ちいいUI」- 楽観的UIのすすめ
himorishige
11
5.9k
生成AIを使ったコードレビューで定性的に品質カバー
chiilog
1
240
副作用をどこに置くか問題:オブジェクト指向で整理する設計判断ツリー
koxya
1
590
Featured
See All Featured
Mind Mapping
helmedeiros
PRO
0
77
個人開発の失敗を避けるイケてる考え方 / tips for indie hackers
panda_program
122
21k
Claude Code どこまでも/ Claude Code Everywhere
nwiizo
61
52k
Jess Joyce - The Pitfalls of Following Frameworks
techseoconnect
PRO
1
63
Evolution of real-time – Irina Nazarova, EuRuKo, 2024
irinanazarova
9
1.2k
Marketing to machines
jonoalderson
1
4.6k
Designing Experiences People Love
moore
144
24k
Building a A Zero-Code AI SEO Workflow
portentint
PRO
0
300
Embracing the Ebb and Flow
colly
88
5k
The Anti-SEO Checklist Checklist. Pubcon Cyber Week
ryanjones
0
55
Building Adaptive Systems
keathley
44
2.9k
How to train your dragon (web standard)
notwaldorf
97
6.5k
Transcript
Ananth Packkildurai November 28, 2017 1 Measuring Slack API performance
using Druid
Public launch: 2014 800+ employees across 7 countries worldwide HQ
in San Francisco Diverse set of industries including software/technology, retail, media, telecom and professional services. About Slack
An unprecedented adoption rate
Agenda 1. A bit history. 2. Druid infrastructure & usecases
3. Challenges.
A bit history
March 2016 5 350+ 2M Data Engineers Slack employees Active
users
October 2017 10 800+ 6M Data Engineers Slack employees Active
users
Data usage 1 in 3 per week 500+ tables 400k
access data warehouse Tables Events per sec
It is all about Slogs
Well, not exactly
Slog
Slog
Druid infrastructure & usecases
What can go wrong?
We want more...
Performance & Experimentation • Engineering & CE team should be
able to detect the performance bottleneck proactively. • Engineers should be able to see their experimentation performance in near real-time.
Near Real time Pipeline
Keep the load in DW Kafka predictable. More comfortable to
upgrade and verify newer Kafka version. Smaller Kafka cluster is relatively more straightforward to operate. Why Analytics Kafka
Druid Architecture
Middle manager Autoscale based on number of running tasks. Historical
node autoscale based on the segment size. Fault tolerance deployment for overlord & Coordinator Brokers autoscale and load balanced by ELB. Druid Architecture
Challenges
Cascading failures
Forward Index fields
SQL
Bridge the gap between batch and realtime tables.
Thank You! 26