Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
NLTK Intro for PUGS
Search
Victor Neo
March 27, 2012
Programming
7
570
NLTK Intro for PUGS
Slides for the NLTK talk given on March 2012 for Python User Group SG Meetup.
Victor Neo
March 27, 2012
Tweet
Share
More Decks by Victor Neo
See All by Victor Neo
Django - The Next Steps
victorneo
5
630
DevOps: Python tools to get started
victorneo
9
13k
Git and Python workshop
victorneo
2
790
Other Decks in Programming
See All in Programming
「待たせ上手」なスケルトンスクリーン、 そのUXの裏側
teamlab
PRO
0
570
AIでLINEスタンプを作ってみた
eycjur
1
230
Ruby Parser progress report 2025
yui_knk
1
460
AI時代のUIはどこへ行く?
yusukebe
18
9.1k
複雑なドメインに挑む.pdf
yukisakai1225
5
1.2k
Compose Multiplatform × AI で作る、次世代アプリ開発支援ツールの設計と実装
thagikura
0
170
Android端末で実現するオンデバイスLLM 2025
masayukisuda
1
170
奥深くて厄介な「改行」と仲良くなる20分
oguemon
1
570
個人軟體時代
ethanhuang13
0
330
AIと私たちの学習の変化を考える - Claude Codeの学習モードを例に
azukiazusa1
11
4.4k
The Past, Present, and Future of Enterprise Java
ivargrimstad
0
420
私の後悔をAWS DMSで解決した話
hiramax
4
210
Featured
See All Featured
Imperfection Machines: The Place of Print at Facebook
scottboms
268
13k
Building a Modern Day E-commerce SEO Strategy
aleyda
43
7.6k
Practical Tips for Bootstrapping Information Extraction Pipelines
honnibal
PRO
23
1.4k
The Illustrated Children's Guide to Kubernetes
chrisshort
48
50k
Writing Fast Ruby
sferik
628
62k
Building Applications with DynamoDB
mza
96
6.6k
How to Ace a Technical Interview
jacobian
279
23k
Design and Strategy: How to Deal with People Who Don’t "Get" Design
morganepeng
131
19k
Easily Structure & Communicate Ideas using Wireframe
afnizarnur
194
16k
Optimising Largest Contentful Paint
csswizardry
37
3.4k
How to Think Like a Performance Engineer
csswizardry
26
1.9k
Producing Creativity
orderedlist
PRO
347
40k
Transcript
Natural Language Toolkit @victorneo
Natural Language Processing
"the process of a computer extracting meaningful information from natural
language input and/or producing natural language output"
None
Getting started with NLTK
Open source Python modules, linguistic data and documentation for research
and development in natural language processing and text analytics, with distributions for Windows, Mac OSX and Linux. NLTK
None
installatio n # you might need numpy pip install nltk
# enter Python shell import nltk nltk.download()
None
packages # For Part of Speech tagging maxent_treebank_pos_tagger # Get
a list of stopwords stopwords # Brown corpus to play around brown
Preparing data / corpus
tokens NLTK works on Tokens, for example, "Hello World!" will
be tokenized to: ['Hello', 'World', '!'] The built-in tokenizer for most use cases: nltk.word_tokenize("Hello World!")
text processing HTML text: raw = nltk.clean_html(html_text) tokens = nltk.word_tokenize(raw)
text = nltk.Text(tokens) Use BeautifulSoup for preprocessing of the HTML text to discard unnecessary data.
Part-of-speech tagging
pos tagging text = "Run away!" nltk.word_tokenize(text) nltk.pos_tag(tokens) [('Run', 'NNP'),
('away', 'RB'), ('!', '.')]
pos tagging [('Run', 'NNP'), ('away', 'RB'), ('!', '.')] NNP: Proper
Noun, Singular RB : Adverb http://www.ling.upenn.edu/courses/Fall_2003/ling001/penn_treebank_pos. html
pos tagging "The sailor dogs the barmaid." [('The', 'DT'), ('sailor',
'NN'), ('dogs', 'NNS'), ('the', 'DT'), ('barmaid', 'NN'), ('.', '.')]
Sentiment Analysis Code: http://bit.ly/GLu2Q9
Differentiate between "happy" and "sad" tweets. Teach the classifier the
"features" of happy & sad tweets and test how good it is.
Happy: "Looking through old pics and realizing everything happens for
a reason. So happy with where I am right now" Sad: "So sad I have 8 AM class tomorrow"
Process data (tweets) Extract Features Train classifier Test classifer accuracy
Tokenize tweets extract_features Naive Bayes Classifier
Process data (tweets) Extract Features Train classifier Test classifer accuracy
Tokenize tweets extract_features Naive Bayes Classifier
happy.txt sad.txt happy_test.txt sad_test.txt } training data } testing data
Tweets obtained from Twitter Search API
Process data (tweets) Extract Features Train classifier Test classifer accuracy
Tokenize tweets extract_features Naive Bayes Classifier
Happy tweets usually contain the following words: "am happy", "great
day" etc. Sad tweets usually contain the following: "not happy", "am sad" etc. features
{'contains(not)': False, 'contains(view)': False, 'contains(best)': False, 'contains(excited)': False, 'contains(morning)': False,
'contains(about)': False, 'contains(horrible)': True, 'contains(like)': False, ... } output of extract_features()
Process data (tweets) Extract Features Train classifier Test classifer accuracy
Tokenize tweets extract_features Naive Bayes Classifier
training_set = \ nltk.classify.util.\ apply_features(extract_features, tweets) classifier = \ NaiveBayesClassifier.train
(training_set) training the classifer training classifer
Process data (tweets) Extract Features Train classifier Test classifer accuracy
Tokenize tweets extract_features Naive Bayes Classifier
def classify_tweet(tweet): return \ classifier.classify(extract_features (tweet)) testing classifer
$ python classification.py Total accuracy: 90.00% (18/20) 18 tweets got
classified correctly.
Where to go from here.
http://www.nltk.org/book
https://class.coursera.org/nlp/auth/welcome
http://www.slideshare.net/shanbady/nltk-boston-text-analytics
[('Thank', 'NNP'), ('you', 'PRP'), ('.', '.')] @victorneo