Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
NLTK Intro for PUGS
Search
Victor Neo
March 27, 2012
Programming
7
550
NLTK Intro for PUGS
Slides for the NLTK talk given on March 2012 for Python User Group SG Meetup.
Victor Neo
March 27, 2012
Tweet
Share
More Decks by Victor Neo
See All by Victor Neo
Django - The Next Steps
victorneo
5
590
DevOps: Python tools to get started
victorneo
9
13k
Git and Python workshop
victorneo
2
780
Other Decks in Programming
See All in Programming
『ドメイン駆動設計をはじめよう』のモデリングアプローチ
masuda220
PRO
8
540
NSOutlineView何もわからん:( 前編 / I Don't Understand About NSOutlineView :( Pt. 1
usagimaru
0
330
Jakarta EE meets AI
ivargrimstad
0
120
Webの技術スタックで マルチプラットフォームアプリ開発を可能にするElixirDesktopの紹介
thehaigo
2
1k
Jakarta EE meets AI
ivargrimstad
0
580
Generative AI Use Cases JP (略称:GenU)奮闘記
hideg
1
290
Tauriでネイティブアプリを作りたい
tsucchinoko
0
370
AI時代におけるSRE、 あるいはエンジニアの生存戦略
pyama86
6
1.1k
Why Jakarta EE Matters to Spring - and Vice Versa
ivargrimstad
0
1k
Flutterを言い訳にしない!アプリの使い心地改善テクニック5選🔥
kno3a87
1
150
C++でシェーダを書く
fadis
6
4.1k
シェーダーで魅せるMapLibreの動的ラスタータイル
satoshi7190
1
480
Featured
See All Featured
Reflections from 52 weeks, 52 projects
jeffersonlam
346
20k
Why You Should Never Use an ORM
jnunemaker
PRO
54
9.1k
Faster Mobile Websites
deanohume
305
30k
Building an army of robots
kneath
302
43k
Building Flexible Design Systems
yeseniaperezcruz
327
38k
Cheating the UX When There Is Nothing More to Optimize - PixelPioneers
stephaniewalter
280
13k
Six Lessons from altMBA
skipperchong
27
3.5k
How to Think Like a Performance Engineer
csswizardry
20
1.1k
Adopting Sorbet at Scale
ufuk
73
9.1k
GitHub's CSS Performance
jonrohan
1030
460k
Ruby is Unlike a Banana
tanoku
97
11k
JavaScript: Past, Present, and Future - NDC Porto 2020
reverentgeek
47
5k
Transcript
Natural Language Toolkit @victorneo
Natural Language Processing
"the process of a computer extracting meaningful information from natural
language input and/or producing natural language output"
None
Getting started with NLTK
Open source Python modules, linguistic data and documentation for research
and development in natural language processing and text analytics, with distributions for Windows, Mac OSX and Linux. NLTK
None
installatio n # you might need numpy pip install nltk
# enter Python shell import nltk nltk.download()
None
packages # For Part of Speech tagging maxent_treebank_pos_tagger # Get
a list of stopwords stopwords # Brown corpus to play around brown
Preparing data / corpus
tokens NLTK works on Tokens, for example, "Hello World!" will
be tokenized to: ['Hello', 'World', '!'] The built-in tokenizer for most use cases: nltk.word_tokenize("Hello World!")
text processing HTML text: raw = nltk.clean_html(html_text) tokens = nltk.word_tokenize(raw)
text = nltk.Text(tokens) Use BeautifulSoup for preprocessing of the HTML text to discard unnecessary data.
Part-of-speech tagging
pos tagging text = "Run away!" nltk.word_tokenize(text) nltk.pos_tag(tokens) [('Run', 'NNP'),
('away', 'RB'), ('!', '.')]
pos tagging [('Run', 'NNP'), ('away', 'RB'), ('!', '.')] NNP: Proper
Noun, Singular RB : Adverb http://www.ling.upenn.edu/courses/Fall_2003/ling001/penn_treebank_pos. html
pos tagging "The sailor dogs the barmaid." [('The', 'DT'), ('sailor',
'NN'), ('dogs', 'NNS'), ('the', 'DT'), ('barmaid', 'NN'), ('.', '.')]
Sentiment Analysis Code: http://bit.ly/GLu2Q9
Differentiate between "happy" and "sad" tweets. Teach the classifier the
"features" of happy & sad tweets and test how good it is.
Happy: "Looking through old pics and realizing everything happens for
a reason. So happy with where I am right now" Sad: "So sad I have 8 AM class tomorrow"
Process data (tweets) Extract Features Train classifier Test classifer accuracy
Tokenize tweets extract_features Naive Bayes Classifier
Process data (tweets) Extract Features Train classifier Test classifer accuracy
Tokenize tweets extract_features Naive Bayes Classifier
happy.txt sad.txt happy_test.txt sad_test.txt } training data } testing data
Tweets obtained from Twitter Search API
Process data (tweets) Extract Features Train classifier Test classifer accuracy
Tokenize tweets extract_features Naive Bayes Classifier
Happy tweets usually contain the following words: "am happy", "great
day" etc. Sad tweets usually contain the following: "not happy", "am sad" etc. features
{'contains(not)': False, 'contains(view)': False, 'contains(best)': False, 'contains(excited)': False, 'contains(morning)': False,
'contains(about)': False, 'contains(horrible)': True, 'contains(like)': False, ... } output of extract_features()
Process data (tweets) Extract Features Train classifier Test classifer accuracy
Tokenize tweets extract_features Naive Bayes Classifier
training_set = \ nltk.classify.util.\ apply_features(extract_features, tweets) classifier = \ NaiveBayesClassifier.train
(training_set) training the classifer training classifer
Process data (tweets) Extract Features Train classifier Test classifer accuracy
Tokenize tweets extract_features Naive Bayes Classifier
def classify_tweet(tweet): return \ classifier.classify(extract_features (tweet)) testing classifer
$ python classification.py Total accuracy: 90.00% (18/20) 18 tweets got
classified correctly.
Where to go from here.
http://www.nltk.org/book
https://class.coursera.org/nlp/auth/welcome
http://www.slideshare.net/shanbady/nltk-boston-text-analytics
[('Thank', 'NNP'), ('you', 'PRP'), ('.', '.')] @victorneo