Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
NLTK Intro for PUGS
Search
Victor Neo
March 27, 2012
Programming
7
580
NLTK Intro for PUGS
Slides for the NLTK talk given on March 2012 for Python User Group SG Meetup.
Victor Neo
March 27, 2012
Tweet
Share
More Decks by Victor Neo
See All by Victor Neo
Django - The Next Steps
victorneo
5
660
DevOps: Python tools to get started
victorneo
9
13k
Git and Python workshop
victorneo
2
800
Other Decks in Programming
See All in Programming
dchart: charts from deck markup
ajstarks
3
1k
Apache Iceberg V3 and migration to V3
tomtanaka
0
160
Oxlintはいいぞ
yug1224
5
1.3k
Lambda のコードストレージ容量に気をつけましょう
tattwan718
0
140
16年目のピクシブ百科事典を支える最新の技術基盤 / The Modern Tech Stack Powering Pixiv Encyclopedia in its 16th Year
ahuglajbclajep
5
1k
インターン生でもAuth0で認証基盤刷新が出来るのか
taku271
0
190
React 19でつくる「気持ちいいUI」- 楽観的UIのすすめ
himorishige
11
7.4k
AIエージェント、”どう作るか”で差は出るか? / AI Agents: Does the "How" Make a Difference?
rkaga
4
2k
SourceGeneratorのススメ
htkym
0
200
登壇資料を作る時に意識していること #登壇資料_findy
konifar
4
1.4k
CSC307 Lecture 04
javiergs
PRO
0
660
The Past, Present, and Future of Enterprise Java
ivargrimstad
0
600
Featured
See All Featured
Breaking role norms: Why Content Design is so much more than writing copy - Taylor Woolridge
uxyall
0
170
The State of eCommerce SEO: How to Win in Today's Products SERPs - #SEOweek
aleyda
2
9.6k
We Have a Design System, Now What?
morganepeng
54
8k
Design of three-dimensional binary manipulators for pick-and-place task avoiding obstacles (IECON2024)
konakalab
0
350
sira's awesome portfolio website redesign presentation
elsirapls
0
150
HU Berlin: Industrial-Strength Natural Language Processing with spaCy and Prodigy
inesmontani
PRO
0
220
Efficient Content Optimization with Google Search Console & Apps Script
katarinadahlin
PRO
1
330
Designing for Timeless Needs
cassininazir
0
130
brightonSEO & MeasureFest 2025 - Christian Goodrich - Winning strategies for Black Friday CRO & PPC
cargoodrich
3
100
Navigating Algorithm Shifts & AI Overviews - #SMXNext
aleyda
0
1.1k
Why Mistakes Are the Best Teachers: Turning Failure into a Pathway for Growth
auna
0
54
Highjacked: Video Game Concept Design
rkendrick25
PRO
1
290
Transcript
Natural Language Toolkit @victorneo
Natural Language Processing
"the process of a computer extracting meaningful information from natural
language input and/or producing natural language output"
None
Getting started with NLTK
Open source Python modules, linguistic data and documentation for research
and development in natural language processing and text analytics, with distributions for Windows, Mac OSX and Linux. NLTK
None
installatio n # you might need numpy pip install nltk
# enter Python shell import nltk nltk.download()
None
packages # For Part of Speech tagging maxent_treebank_pos_tagger # Get
a list of stopwords stopwords # Brown corpus to play around brown
Preparing data / corpus
tokens NLTK works on Tokens, for example, "Hello World!" will
be tokenized to: ['Hello', 'World', '!'] The built-in tokenizer for most use cases: nltk.word_tokenize("Hello World!")
text processing HTML text: raw = nltk.clean_html(html_text) tokens = nltk.word_tokenize(raw)
text = nltk.Text(tokens) Use BeautifulSoup for preprocessing of the HTML text to discard unnecessary data.
Part-of-speech tagging
pos tagging text = "Run away!" nltk.word_tokenize(text) nltk.pos_tag(tokens) [('Run', 'NNP'),
('away', 'RB'), ('!', '.')]
pos tagging [('Run', 'NNP'), ('away', 'RB'), ('!', '.')] NNP: Proper
Noun, Singular RB : Adverb http://www.ling.upenn.edu/courses/Fall_2003/ling001/penn_treebank_pos. html
pos tagging "The sailor dogs the barmaid." [('The', 'DT'), ('sailor',
'NN'), ('dogs', 'NNS'), ('the', 'DT'), ('barmaid', 'NN'), ('.', '.')]
Sentiment Analysis Code: http://bit.ly/GLu2Q9
Differentiate between "happy" and "sad" tweets. Teach the classifier the
"features" of happy & sad tweets and test how good it is.
Happy: "Looking through old pics and realizing everything happens for
a reason. So happy with where I am right now" Sad: "So sad I have 8 AM class tomorrow"
Process data (tweets) Extract Features Train classifier Test classifer accuracy
Tokenize tweets extract_features Naive Bayes Classifier
Process data (tweets) Extract Features Train classifier Test classifer accuracy
Tokenize tweets extract_features Naive Bayes Classifier
happy.txt sad.txt happy_test.txt sad_test.txt } training data } testing data
Tweets obtained from Twitter Search API
Process data (tweets) Extract Features Train classifier Test classifer accuracy
Tokenize tweets extract_features Naive Bayes Classifier
Happy tweets usually contain the following words: "am happy", "great
day" etc. Sad tweets usually contain the following: "not happy", "am sad" etc. features
{'contains(not)': False, 'contains(view)': False, 'contains(best)': False, 'contains(excited)': False, 'contains(morning)': False,
'contains(about)': False, 'contains(horrible)': True, 'contains(like)': False, ... } output of extract_features()
Process data (tweets) Extract Features Train classifier Test classifer accuracy
Tokenize tweets extract_features Naive Bayes Classifier
training_set = \ nltk.classify.util.\ apply_features(extract_features, tweets) classifier = \ NaiveBayesClassifier.train
(training_set) training the classifer training classifer
Process data (tweets) Extract Features Train classifier Test classifer accuracy
Tokenize tweets extract_features Naive Bayes Classifier
def classify_tweet(tweet): return \ classifier.classify(extract_features (tweet)) testing classifer
$ python classification.py Total accuracy: 90.00% (18/20) 18 tweets got
classified correctly.
Where to go from here.
http://www.nltk.org/book
https://class.coursera.org/nlp/auth/welcome
http://www.slideshare.net/shanbady/nltk-boston-text-analytics
[('Thank', 'NNP'), ('you', 'PRP'), ('.', '.')] @victorneo