• Algorithms for Hyper-Parameter Optimization https://papers.nips.cc/paper/4443-algorithms-for-hyper-parameter-optimization.pdf • A Conceptual Explanation of Bayesian Hyperparameter Optimization for Machine Learning https://towardsdatascience.com/a-conceptual-explanation-of-bayesian-model-based-hyperparameter-optimization-for-machine-learning-b8172278050f • A Comparative Study of Black-box Optimization Algorithms for Tuning of Hyper-parameters in Deep Neural Networks http://www.diva-portal.org/smash/get/diva2:1223709/FULLTEXT01.pdf • Hyperopt the Xgboost model - Kaggle https://www.kaggle.com/yassinealouini/hyperopt-the-xgboost-model • Hyperparameter optimization for Neural Networks – NeuPy http://neupy.com/2016/12/17/hyperparameter_optimization_for_neural_networks.html#bayesian-optimization • Hyperparameter tuning in Cloud Machine Learning Engine using Bayesian Optimization – Google Cloud Blog https://cloud.google.com/blog/products/gcp/hyperparameter-tuning-cloud-machine-learning-engine-using-bayesian-optimization • A Introductioy Example of Bayesian Optimization in Python with hyperopt https://towardsdatascience.com/an-introductory-example-of-bayesian-optimization-in-python-with-hyperopt-aae40fff4ff0 • A Tutorial on Bayesian Optimization https://arxiv.org/pdf/1807.02811.pdf • A Tutorial on Bayesian Optimization of Expensive Cost Functions, with Application to Active User Modeling and Hierarchical Reinforcement Learning https://arxiv.org/pdf/1012.2599.pdf • A Tutorial on Gaussian Processes (or why I don’t use SVMs) http://mlss2011.comp.nus.edu.sg/uploads/Site/lect1gp.pdf • Optuna(TPE)*)% – Qiita https://qiita.com/nabenabe0928/items/708d221dbccebf31f01c • OptunaXGBoost"#,#(&, ',!+ http://www.algo-fx-blog.com/xgboost-optuna-hyperparameter-tuning/ • $ https://www.slideshare.net/hoxo_m/ss-77421091