Upgrade to Pro — share decks privately, control downloads, hide ads and more …

毕设答辩

Wang Dàpéng
November 18, 2012

 毕设答辩

我只是想测试一下这个网站

Wang Dàpéng

November 18, 2012
Tweet

Other Decks in Research

Transcript

  1. 形式化定义1 社交网络G: G = (V , E) 文档集D:D = {di

    }M i=1 社交社区:{G, D} 话题θ:单词的分布{p(w|θ)}w∈W ,且有Σw∈W p(w|θ) = 1 社会网络中话题的传播及内容演变分析
  2. 形式化定义2 主题Θ: 一段时间内话题流的集合:Θ = {θt}T t=0 θ0 称为原始话题 传播图谱: 文档dj

    到文档di 的传播流为di 受到dj 的影响而采纳了Θ中的话 题的概率,强度为πi,j di 也可能给Θ引入新的内容,认为有一个从话题θti 到di 的传 播流,强度为πi,θ 传播向量π(i):所有流向di 的传播流的集合, 即π(i) = {πi,j }dj ∈D ∪ {πi,θ } 传播图谱就是D中所有文档的传播向量的集合, 即Π = {π(i)}di ∈D 社会网络中话题的传播及内容演变分析
  3. 形式化定义任务 给定一个社交社区G、一个用户产生的文档集D以及一个原始话 题θ0 ,我们的任务是推断出传播图谱Π和追踪话题的版本演变Θ: P(Π, Θ|G, D, θ0) ∝ P(Θ|Π,

    θ0) · P(Π, G) (1) 这个公式的前半部分称为话题模型,后半部分称为传播模型 社会网络中话题的传播及内容演变分析
  4. 话题模型 由于直接计算Θ的后验概率比较复杂,我们对公式做如下变形: P(Θ|Π, θ0) ∝ P(D|Θ, Π, θ0) · P(Θ|θ0)

    (2) di 中出现词w的概率为: p(w|di ) = (1 − λB)( j∈r(i) πi p(w|θdj ) + πi,θp(w|θti )) + λBp(w|θB) (3) P(D|Θ, Π, θ0) = di ∈D w∈W p(w|di )c(w,di ) (4) P(Θ|θ0) = t∈1...T p(θt|θ0) = t∈1...T w∈W p(w|θt)µE p(w|θ0) (5) 社会网络中话题的传播及内容演变分析
  5. 传播模型 P(Π|G) = P(Π|Π ) = P({π(i)}di ∈D|Π ) =

    di ∈D P(π(i)|π (i)) (6) 高斯马尔可夫随机场(GMRF)正规化: P(π(i)|π (i)) ∝ e−1 2 i ,j ∈r(i)∪θ (πi,i −µi,i )Qπi (i ,j )(πi,j −µi,j ) (7) 社会网络中话题的传播及内容演变分析
  6. EM算法估计参数 要估计的参数:πi,j , πi,θ, p(w|θt) E-Step: z(n) di ,w (θdj

    ) = π(n−1) i,j p(w|θdj ) j ∈r(i) π(n−1) i,j p(w|θdj ) + π(n−1) i,θ p(w|θti ) (8) z(n) di ,w (θti ) = π(n−1) i,j p(n−1)(w|θti ) j ∈r(i) π(n−1) i,j p(w|θdj ) + π(n−1) i,θ p(w|θti ) (9) z(n) di ,w (θB ) = λB p(w|θB ) (1 − λB )( j π(n−1) i,j p(w|θdj ) + π(n−1) i,θ p(w|θti )) + λB p(w|θB ) (10) 社会网络中话题的传播及内容演变分析
  7. EM算法参数估计 M-Step: p(w|θt ) = di ,ti =t c(di ,

    w)(1 − z(n) di ,w (θB ))z(n) di ,w (θt ) + µE p(w|θ0 ) w di ,ti =t c(di , w )(1 − z(n) di ,w (θB ))z(n) di ,w (θt ) + µE p(w |θ0 ) (11) πi,j = j∈r(i) c(w, di ) · (1 − zdi,w (θB )) · zdi,w (θdj ) + µG (gi,j − ti − tj α ) (12) 社会网络中话题的传播及内容演变分析
  8. 实验及结果 话题的版本: 原始话题 2002年 2004年 2006年 2008年 2010年 data 0.35

    data 0.54 data 0.41 data 0.45 data 0.41 data 0.43 mining 0.23 mining 0.37 mining 0.35 mining 0.32 mining 0.31 mining 0.33 patterns 0.15 clustering 0.10 patterns 0.13 patterns 0.12 patterns 0.14 patterns 0.13 frequent 0.13 legacy 0.01 frequent 0.06 frequent 0.07 frequent 0.08 frequent 0.06 rules 0.07 reengineering 0.01 rules 0.02 rules 0.03 rules 0.02 rules 0.02 clustering 0.04 distributed 0.01 clustering 0.01 discovery 0.01 distributed 0.01 clustering 0.02 discovery 0.03 systems 0.01 distributed 0.01 clustering 0.01 clustering 0.01 discovery 0.01 object 0.01 approach 0.01 based 0.01 association 0.01 algorithm 0.01 system 0.01 pattern 0.01 based 0.01 algorithm 0.01 method 0.01 environments 0.01 complex 0.01 web 0.01 algorithm 0.01 abnormal 0.01 社会网络中话题的传播及内容演变分析