Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
了解K-Means算法
Search
yafei002
January 08, 2017
Technology
1
210
了解K-Means算法
yafei002
January 08, 2017
Tweet
Share
More Decks by yafei002
See All by yafei002
了解人工神经网络
yafei002
1
210
了解朴素贝叶斯
yafei002
1
230
了解KNN算法
yafei002
0
170
了解决策树和C4.5算法
yafei002
1
260
数据可视化之视觉感知与认知
yafei002
1
380
数据可视化之地理信息可视化
yafei002
1
390
数据可视化之层次和网络数据可视化(上)
yafei002
1
660
数据可视化之复杂高维多元数据的可视化(上)
yafei002
1
290
Data Visualization Introduction and History
yafei002
1
320
Other Decks in Technology
See All in Technology
国井さんにPurview の話を聞く会
sophiakunii
1
280
#22 CA × atmaCup 3rd 1st Place Solution
yumizu
1
110
20251225_たのしい出張報告&IgniteRecap!
ponponmikankan
0
110
「駆動」って言葉、なんかカッコイイ_Mitz
comucal
PRO
0
130
re:Invent2025 セッションレポ ~Spec-driven development with Kiro~
nrinetcom
PRO
2
170
AWS re:Invent 2025 を振り返る
kazzpapa3
2
110
松尾研LLM講座2025 応用編Day3「軽量化」 講義資料
aratako
15
4.8k
ESXi のAIOps だ!2025冬
unnowataru
0
470
チームで安全にClaude Codeを利用するためのプラクティス / team-claude-code-practices
tomoki10
3
1.6k
ECS_EKS以外の選択肢_ROSA入門_.pdf
masakiokuda
1
120
複雑さを受け入れるか、拒むか? - 事業成長とともに育ったモノリスを前に私が考えたこと #RSGT2026
murabayashi
0
890
ルネサンス開発者を育てる 1on1支援AIエージェント
yusukeshimizu
0
130
Featured
See All Featured
RailsConf & Balkan Ruby 2019: The Past, Present, and Future of Rails at GitHub
eileencodes
141
34k
Designing for Performance
lara
610
70k
Are puppies a ranking factor?
jonoalderson
0
2.6k
Introduction to Domain-Driven Design and Collaborative software design
baasie
1
530
30 Presentation Tips
portentint
PRO
1
180
Large-scale JavaScript Application Architecture
addyosmani
515
110k
Chrome DevTools: State of the Union 2024 - Debugging React & Beyond
addyosmani
9
1k
The Spectacular Lies of Maps
axbom
PRO
1
410
Chasing Engaging Ingredients in Design
codingconduct
0
93
Practical Orchestrator
shlominoach
190
11k
Mobile First: as difficult as doing things right
swwweet
225
10k
Ethics towards AI in product and experience design
skipperchong
1
150
Transcript
K-Means算法 yafei002
K均值算法工作原理 SSE(误差平方和)
特点 优点:简单 缺点/局限: 1. 对离群值和噪音敏感 2. 适用于具有中心(质心)概念的数 据 3. 仅能获得局部最优解
4. 对初始聚簇中心敏感 5. 选择最优的k值比较困难 6. 潜在问题可能产生“空聚簇”
《数据挖掘导论》 《机器学习实战》 《数据挖掘十大 算法》 参考