Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
了解KNN算法
Search
Sponsored
·
Your Podcast. Everywhere. Effortlessly.
Share. Educate. Inspire. Entertain. You do you. We'll handle the rest.
→
yafei002
January 08, 2017
Technology
0
170
了解KNN算法
yafei002
January 08, 2017
Tweet
Share
More Decks by yafei002
See All by yafei002
了解人工神经网络
yafei002
1
210
了解朴素贝叶斯
yafei002
1
230
了解K-Means算法
yafei002
1
210
了解决策树和C4.5算法
yafei002
1
260
数据可视化之视觉感知与认知
yafei002
1
390
数据可视化之地理信息可视化
yafei002
1
390
数据可视化之层次和网络数据可视化(上)
yafei002
1
670
数据可视化之复杂高维多元数据的可视化(上)
yafei002
1
290
Data Visualization Introduction and History
yafei002
1
320
Other Decks in Technology
See All in Technology
Greatest Disaster Hits in Web Performance
guaca
0
280
2026年、サーバーレスの現在地 -「制約と戦う技術」から「当たり前の実行基盤」へ- /serverless2026
slsops
2
260
SREチームをどう作り、どう育てるか ― Findy横断SREのマネジメント
rvirus0817
0
330
SREじゃなかった僕らがenablingを通じて「SRE実践者」になるまでのリアル / SRE Kaigi 2026
aeonpeople
6
2.5k
Oracle AI Database移行・アップグレード勉強会 - RAT活用編
oracle4engineer
PRO
0
110
【Ubie】AIを活用した広告アセット「爆速」生成事例 | AI_Ops_Community_Vol.2
yoshiki_0316
1
110
SRE Enabling戦記 - 急成長する組織にSREを浸透させる戦いの歴史
markie1009
0
150
[CV勉強会@関東 World Model 読み会] Orbis: Overcoming Challenges of Long-Horizon Prediction in Driving World Models (Mousakhan+, NeurIPS 2025)
abemii
0
150
usermode linux without MMU - fosdem2026 kernel devroom
thehajime
0
240
SchooでVue.js/Nuxtを技術選定している理由
yamanoku
3
160
AIエージェントに必要なのはデータではなく文脈だった/ai-agent-context-graph-mybest
jonnojun
1
220
予期せぬコストの急増を障害のように扱う――「コスト版ポストモーテム」の導入とその後の改善
muziyoshiz
1
2k
Featured
See All Featured
The Illustrated Guide to Node.js - THAT Conference 2024
reverentgeek
0
260
Why You Should Never Use an ORM
jnunemaker
PRO
61
9.7k
Product Roadmaps are Hard
iamctodd
PRO
55
12k
How to Think Like a Performance Engineer
csswizardry
28
2.5k
The AI Revolution Will Not Be Monopolized: How open-source beats economies of scale, even for LLMs
inesmontani
PRO
3
3k
I Don’t Have Time: Getting Over the Fear to Launch Your Podcast
jcasabona
34
2.6k
The Language of Interfaces
destraynor
162
26k
Scaling GitHub
holman
464
140k
DevOps and Value Stream Thinking: Enabling flow, efficiency and business value
helenjbeal
1
100
Ten Tips & Tricks for a 🌱 transition
stuffmc
0
71
HDC tutorial
michielstock
1
390
Designing for humans not robots
tammielis
254
26k
Transcript
了解KNN算法 yafei002
a a a a a a a a o o
o c o o o 给定N个训练样本, 无论什么类别,KNN算法识别离目标最近的k个邻居
a 当k=1时,在空间中每个样本确定一个区域,也就是Voronoi分区 e c b R1 R2 R3 R4
注意 • 对于二分类问题k选择为奇数 • k不能是类别数量的整数倍 • KNN算法的主要缺点是复杂度,它需要搜索所有的样本从而找到最近的邻居
THANKS