Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
了解KNN算法
Search
yafei002
January 08, 2017
Technology
0
170
了解KNN算法
yafei002
January 08, 2017
Tweet
Share
More Decks by yafei002
See All by yafei002
了解人工神经网络
yafei002
1
210
了解朴素贝叶斯
yafei002
1
230
了解K-Means算法
yafei002
1
210
了解决策树和C4.5算法
yafei002
1
260
数据可视化之视觉感知与认知
yafei002
1
380
数据可视化之地理信息可视化
yafei002
1
390
数据可视化之层次和网络数据可视化(上)
yafei002
1
660
数据可视化之复杂高维多元数据的可视化(上)
yafei002
1
290
Data Visualization Introduction and History
yafei002
1
320
Other Decks in Technology
See All in Technology
小さく、早く、可能性を多産する。生成AIプロジェクト / prAIrie-dog
visional_engineering_and_design
0
310
Introduction to Sansan for Engineers / エンジニア向け会社紹介
sansan33
PRO
5
59k
ECS_EKS以外の選択肢_ROSA入門_.pdf
masakiokuda
1
120
AWS re:Inventre:cap ~AmazonNova 2 Omniのワークショップを体験してきた~
nrinetcom
PRO
0
120
Agentic AIが変革するAWSの開発・運用・セキュリティ ~Frontier Agentsを試してみた~ / Agentic AI transforms AWS development, operations, and security I tried Frontier Agents
yuj1osm
0
190
Sansan Engineering Unit 紹介資料
sansan33
PRO
1
3.6k
Contract One Engineering Unit 紹介資料
sansan33
PRO
0
12k
2025年 山梨の技術コミュニティを振り返る
yuukis
0
140
re:Invent2025 セッションレポ ~Spec-driven development with Kiro~
nrinetcom
PRO
2
170
[PR] はじめてのデジタルアイデンティティという本を書きました
ritou
0
740
Qiita Bash アドカレ LT #1
okaru
0
150
なぜ あなたはそんなに re:Invent に行くのか?
miu_crescent
PRO
0
250
Featured
See All Featured
JavaScript: Past, Present, and Future - NDC Porto 2020
reverentgeek
52
5.8k
DevOps and Value Stream Thinking: Enabling flow, efficiency and business value
helenjbeal
1
76
Exploring the Power of Turbo Streams & Action Cable | RailsConf2023
kevinliebholz
37
6.2k
Self-Hosted WebAssembly Runtime for Runtime-Neutral Checkpoint/Restore in Edge–Cloud Continuum
chikuwait
0
260
Improving Core Web Vitals using Speculation Rules API
sergeychernyshev
21
1.3k
The Illustrated Children's Guide to Kubernetes
chrisshort
51
51k
CSS Pre-Processors: Stylus, Less & Sass
bermonpainter
359
30k
VelocityConf: Rendering Performance Case Studies
addyosmani
333
24k
The MySQL Ecosystem @ GitHub 2015
samlambert
251
13k
Winning Ecommerce Organic Search in an AI Era - #searchnstuff2025
aleyda
0
1.8k
Data-driven link building: lessons from a $708K investment (BrightonSEO talk)
szymonslowik
1
870
How GitHub (no longer) Works
holman
316
140k
Transcript
了解KNN算法 yafei002
a a a a a a a a o o
o c o o o 给定N个训练样本, 无论什么类别,KNN算法识别离目标最近的k个邻居
a 当k=1时,在空间中每个样本确定一个区域,也就是Voronoi分区 e c b R1 R2 R3 R4
注意 • 对于二分类问题k选择为奇数 • k不能是类别数量的整数倍 • KNN算法的主要缺点是复杂度,它需要搜索所有的样本从而找到最近的邻居
THANKS