Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
プロンプトエンジニアリングでがんばらない-Agentic Workflow へ-近藤憲児
Search
Kenji KONDO
April 24, 2024
Technology
6
2k
プロンプトエンジニアリングでがんばらない-Agentic Workflow へ-近藤憲児
Kenji KONDO
April 24, 2024
Tweet
Share
More Decks by Kenji KONDO
See All by Kenji KONDO
「これが最小になる値はな〜んだ?」問題_最適化問題を考える_近藤憲児
kenjikondobai
0
70
AI ChatBot 開発 Tips-近藤憲児
kenjikondobai
0
100
最適ワークスとAI-近藤憲児
kenjikondobai
0
22
LLMの評価-近藤憲児
kenjikondobai
1
290
スカイディスクの LLM の取り組み-近藤憲児
kenjikondobai
0
250
Spring Cloud Data Flow で構成される IIJ IoTサービス
kenjikondobai
0
140
Other Decks in Technology
See All in Technology
Classmethod AI Talks(CATs) #1 司会進行スライド(2024.09.19) / classmethod-ai-talks-aka-cats_moderator-slides_vol1_2024-09-19
shinyaa31
0
250
Discovering AI Models
picardparis
4
3.9k
Next.js のページ遷移を全力で止める
ypresto
9
3.6k
「家族アルバム みてね」における運用管理・ オブザーバビリティの全貌 / Overview of Operation Management and Observability in FamilyAlbum
isaoshimizu
4
170
再考 アクターモデル/ reconsider actor model
ytake
0
380
ナレッジグラフとLLMの相互利用
koujikozaki
0
430
横断組織として考える共通DBの課題解決 〜 桃園の誓いアーキテクチャ 〜 / Addressing Shared Database Challenges as Cross-Team: “Peach Garden Oath” Architecture
4geru
0
240
グイグイ系QAマネージャーの仕事
sadonosake
0
360
言葉は感情の近似値である。その感情と言葉の誤差を最小化しよう ~コミュニケーションにおけるアナログ/デジタル変換の課題に立ち向かう~
nktamago
0
250
不動産 x AIことはじめ~データの真価を拓くために
estie
0
130
watsonx.ai Dojo 環境準備について
oniak3ibm
PRO
0
360
開発者の定量・定性データを組み合わせて開発者体験を把握するための取り組み
ham0215
1
180
Featured
See All Featured
VelocityConf: Rendering Performance Case Studies
addyosmani
322
23k
The World Runs on Bad Software
bkeepers
PRO
64
11k
Agile that works and the tools we love
rasmusluckow
327
20k
Practical Orchestrator
shlominoach
185
10k
Building Applications with DynamoDB
mza
90
6k
How to Ace a Technical Interview
jacobian
274
23k
Fantastic passwords and where to find them - at NoRuKo
philnash
48
2.8k
Optimising Largest Contentful Paint
csswizardry
31
2.8k
ReactJS: Keep Simple. Everything can be a component!
pedronauck
663
120k
The Language of Interfaces
destraynor
153
23k
Stop Working from a Prison Cell
hatefulcrawdad
267
20k
Git: the NoSQL Database
bkeepers
PRO
425
64k
Transcript
プロンプトエンジニアリングで がんばらない − Agentic Workflow へ −
- LLM アプリの品質(出力の安定性、速度など)を上げる手段として、 プロンプトエンジニアリング以外の手段があるということ - この手段に隣接した領域として Agentic Workflow と呼ばれるデザインパター ンがあること
- さわりだけご紹介 今日お伝えしたいこと
「Discord で雑に共有された記事をなんでも要約する」自作アプリ • YouTube の動画 • arXiv の論文 •
SpeakerDeck のスライド • Web 上の記事 • … “Summarize Anything”
• Router で何の要約を求められているかを判断 • 判断に基づいて、専用の Summarizer に要約を任せる “Summarize Anything” のアーキテクチャ
Router YouTube Summarizer Web Summarizer arXiv Summarizer どの Summarizer に 委譲すべきかを判断 … ページに アクセスして本 文を取得して 要約 委譲
Router でやりたいこと • そもそも要約を必要とする文章 なのかを判断する • URL の文字列を抽出 • その
URL が YouTube なのか arXiv なのかの判断 • これら結果を JSON として出力 させる(以下はその例) Router の実装(昔) { "summary_required": true, "url": "https://arxiv.org/pdf/2402.05120.pdf", "method": "arXiv" }
問題 • 品質が全然安定しない。体感 3 割失敗 する ◦ JSON の所定のフォーマットになら ない
◦ URL があるのにそれを抽出しない ◦ … → プロンプトエンジニアリングを頑張ったが、 すぐに限界を感じた Router の実装(昔)
処理を分けた Router の実装(今) URL 抽出 URL から委 譲先を 選択 →
動作が劇的に安定した。ほぼ 100 % 間違わない。 URL の文字列 “論文 https://arxiv.org…” “arXiv” Router
さらに LLM の性能を落 とした Router の実装(今) URL 抽出 URL から委
譲先を 選択 → 品質に変化なし。むしろ速度上がるし、コスト下がるしで、嬉しい Router gpt-4 → gpt-3.5-turbo gpt-4 → gpt-3.5-turbo
• 「zero-shot で巧妙にプロンプトエンジニアリングをして頑張る」よりも「命令をシン プルにしたタスクを多量に LLM に依頼する」ほうがよい • 「zero-shot で gpt-4
や claude-3-opus のような賢い LLM を使う」よりも 「gpt-3.5-turbo や claude-3-haiku のような賢くないけど軽量でコスト低い LLM を 細かく使う」ほうが、品質も速度もコストも満足いく この手法は普遍性があるな、と思っていた。 他にも例えば、要約した文章が日本語じゃなかったり、制約条件をちゃんと守っていなかったりした ときも、もう一度 LLM を call してそれを添削してもらう、ということをすると、およそ満足の行く品質 で安定して出力された。 あと、自然とモジュール化の考え方になっているので、それぞれのモジュール別に改善やテストな どがやりやすい。 「LLM を call しまくる」という戦略
“Agentic Workflow” 単なる経験則に過ぎなかったけども、最近 Andrew Ng がまさにこれに関連したこ とを言っている動画を見つけた そこでは Agentic Workflow
という名前で、 LLM アプリの性能を上げる方法を説明 していた
“Agentic Workflow” 「エッセイをバックスペース無しではじめから最後まで間違えの無いように書いて」と 依頼するよりも、「アウトラインを抽出して」「それに対してドラフトを書いて」「それを 添削して」... と分けて依頼するアイディア https://youtu.be/sal78ACtGTc?si=vFpxwR47DoNaQqiz
“Agentic Workflow” zero-shot の GPT-4 よりもAgentic Workflow を適用し た GPT-3.5
のほうが良い評価を得ている。 https://youtu.be/sal78ACtGTc?si=vFpxwR47DoNaQqiz 上の 4 つのデザインパターンについて述べられてい る。 → Agentic Workflow や Agent については、今いろいろ実装して試している(そして苦労し ている)。役に立ちそうなこと見つけたら、また共有します!