Upgrade to PRO for Only $50/Year—Limited-Time Offer! 🔥
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Spring LT in Aizu
Search
Yamashou
May 26, 2018
Technology
0
82
Spring LT in Aizu
Yamashou
May 26, 2018
Tweet
Share
More Decks by Yamashou
See All by Yamashou
Go Tensorflow 思ってたこと
yamashou
0
200
学生版GoConを開催したい
yamashou
0
2.4k
会津でGo
yamashou
0
2.7k
Aizu.go second
yamashou
0
380
Go ELM
yamashou
0
140
open app lab kick off meeting 2017
yamashou
0
140
manifes2017
yamashou
1
79
Aizu.go
yamashou
0
71
Other Decks in Technology
See All in Technology
AWSセキュリティアップデートとAWSを育てる話
cmusudakeisuke
0
290
Lambdaの常識はどう変わる?!re:Invent 2025 before after
iwatatomoya
1
560
因果AIへの招待
sshimizu2006
0
980
文字列の並び順 / Unicode Collation
tmtms
3
590
今からでも間に合う!速習Devin入門とその活用方法
ismk
1
720
mairuでつくるクレデンシャルレス開発環境 / Credential-less development environment using Mailru
mirakui
5
530
Haskell を武器にして挑む競技プログラミング ─ 操作的思考から意味モデル思考へ
naoya
6
1.5k
今年のデータ・ML系アップデートと気になるアプデのご紹介
nayuts
1
420
乗りこなせAI駆動開発の波
eltociear
1
1.1k
AIプラットフォームにおけるMLflowの利用について
lycorptech_jp
PRO
1
160
[CMU-DB-2025FALL] Apache Fluss - A Streaming Storage for Real-Time Lakehouse
jark
0
120
Challenging Hardware Contests with Zephyr and Lessons Learned
iotengineer22
0
220
Featured
See All Featured
Understanding Cognitive Biases in Performance Measurement
bluesmoon
32
2.7k
Visualizing Your Data: Incorporating Mongo into Loggly Infrastructure
mongodb
48
9.8k
Cheating the UX When There Is Nothing More to Optimize - PixelPioneers
stephaniewalter
286
14k
We Have a Design System, Now What?
morganepeng
54
7.9k
Designing for Performance
lara
610
69k
Performance Is Good for Brains [We Love Speed 2024]
tammyeverts
12
1.3k
Imperfection Machines: The Place of Print at Facebook
scottboms
269
13k
Responsive Adventures: Dirty Tricks From The Dark Corners of Front-End
smashingmag
254
22k
Why You Should Never Use an ORM
jnunemaker
PRO
61
9.6k
実際に使うSQLの書き方 徹底解説 / pgcon21j-tutorial
soudai
PRO
196
70k
Rebuilding a faster, lazier Slack
samanthasiow
84
9.3k
10 Git Anti Patterns You Should be Aware of
lemiorhan
PRO
659
61k
Transcript
ֶੜ͕ܦݧΛ׆͔͢ํ๏ s1230124 Yamashou
ࣗݾհ ࢁຊଠ s1230124 Yamashou ֶ෦4 σβΠχϜ ࠷ۙɿGoɺPython
ֶੜͷΈͳ͞Μ
ΠϯλʔϯɾΞϧόΠ
ܦݧͨ͜͠ͱ
׆͔ͤͯ·͔͢ʁ
Α͘ฉ͘ ΊͪΌͪ͘Ό͍͍ܦݧ ָ͍͠ܦݧɾମݧ ͍͍Ռ͕ग़·ͨ͠
Α͘ฉ͘ ΊͪΌͪ͘Ό͍͍ܦݧ Ͱɺ͏Γͨ͘ͳ͍ ָ͍͠ܦݧɾମݧ ͰɺΓ͔ͨͬͨ͜ͱͱҧ͏ ͍͍Ռ͕ग़·ͨ͠ Ͱɺઈର͋ΕࣾͰ͏͏ٗͩΑͶ
จ͕۟ଟ͍
࣮ࡍΑ͋͘Δ
ͰɺͦΕͰ͍͍Μ͔͢ʁ
ͲΜͳͷͰ ࣗʹؔ͋Δʂ
Ͳ͏Δͷ͔ 1. ߟ͑ํΛม͑Δ 2. ڵຯɾඞཁ͕͋Δ͜ͷʹ͚ͭ͜͡Δ 3. ͖ͬͺΓΕΔ
Ͳ͏Δͷ͔ 1. ߟ͑ํΛม͑Δ 2. ڵຯɾඞཁ͕͋Δ͜ͷʹ͚ͭ͜͡Δ 3. ͖ͬͺΓΕΔ
ࣗͷྫ Django ˠΞϧόΠτͰͬͯΔͭʹटΛͭͬ͜Ή React ˠ React NativeͰݚڀ༻ΞϓϦΛ࡞ͬͯΈΔ Kubernetes ˠ
ݚڀ༻ͷγεςϜͰͬͯΈΔ
KubernetesʹΑΔػցֶशγεςϜ ͍͔ͭ͘ͷϞσϧΛͬͨผγεςϜ εέʔϧ͢ΔϞσϧ܈ ܧଓతʹϞσϧͷߋ৽Λߦ͏ DeploymentsͰϞσϧͷόʔδϣϯΛཧ શʹݸਓతݟղͰ͢
Ϋϥελʔ A B C ཧ D ಛநग़ Ұྫ
Ϋϥελʔ A B C ཧ D ಛநग़ Ұྫ ݘ ݘ
ೣ ݘ
ͬͨ͜ͱ ݘೣผ ݴޠɿGoݴޠ ΞϧΰϦζϜɿELM ಛྔɿLBP ͦΕͧΕͷϞσϧͷAccuracy: 69 ~ 63%
͜Ε͔Β ݚڀ͕มΘͬͨͷͰɺͦΕʹ߹Θͤ ͍͖͍ͯͨ ผͷΞϧΰϦζϜࢼ͍͖͍ͯͨ͠ Ͱ͖ΔͳΒɺGoͰ࣮͍ͨ͠
݁Ռɾײ Accuracy: 72 ~ 55% ͋·ΓՌ্͕Βͳ͔ͬͨ k8sͷѻ͍ํͷ෮शʹͳͬͨ ݚڀͦͷͷָ͘͠Ͱ͖ͨ
݁ ࣗͷڵຯؔ৺ʹඥ͚ͮΔ Βͳ͖Ό͍͚ͳ͍͜ͱΛ֦ு͢Δ ෮शʹ͍͍Α
͋Γ͕ͱ͏͍͟͝ ·ͨ͠ʂ