Lock in $30 Savings on PRO—Offer Ends Soon! ⏳
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
【IR Reading2022秋】 CPFair: Personalized Consumer...
Search
Yamato Hara
November 11, 2022
Research
1
350
【IR Reading2022秋】 CPFair: Personalized Consumer and Producer Fairness Re-ranking for Recommender Systems
IR Reading 2022秋 論文紹介
紹介論文:
https://arxiv.org/abs/2204.08085
Yamato Hara
November 11, 2022
Tweet
Share
More Decks by Yamato Hara
See All by Yamato Hara
【論文ゼミ】Personalized Transfer of User Preferences for Cross-domain Recommendation
yamato0811
0
330
【論文ゼミ】SSE-PT: Sequential Recommendation Via Personalized Transformer
yamato0811
0
150
Other Decks in Research
See All in Research
AIスパコン「さくらONE」の オブザーバビリティ / Observability for AI Supercomputer SAKURAONE
yuukit
2
970
論文読み会 SNLP2025 Learning Dynamics of LLM Finetuning. In: ICLR 2025
s_mizuki_nlp
0
340
不確実性下における目的と手段の統合的探索に向けた連続腕バンディットの応用 / iot70_gp_rff_mab
monochromegane
2
250
AIグラフィックデザインの進化:断片から統合(One Piece)へ / From Fragment to One Piece: A Survey on AI-Driven Graphic Design
shunk031
0
570
LLM-jp-3 and beyond: Training Large Language Models
odashi
1
680
第二言語習得研究における 明示的・暗示的知識の再検討:この分類は何に役に立つか,何に役に立たないか
tam07pb915
0
400
大規模言語モデルにおけるData-Centric AIと合成データの活用 / Data-Centric AI and Synthetic Data in Large Language Models
tsurubee
1
420
情報技術の社会実装に向けた応用と課題:ニュースメディアの事例から / appmech-jsce 2025
upura
0
270
カスタマーサクセスの視点からAWS Summitの展示を考える~製品開発で活用できる勘所~
masakiokuda
2
240
投資戦略202508
pw
0
580
「リアル×スキマ時間」を活用したUXリサーチ 〜新規事業を前に進めるためのUXリサーチプロセスの設計〜
techtekt
PRO
0
150
[論文紹介] Intuitive Fine-Tuning
ryou0634
0
150
Featured
See All Featured
Visualization
eitanlees
150
16k
We Have a Design System, Now What?
morganepeng
54
7.9k
Learning to Love Humans: Emotional Interface Design
aarron
274
41k
Exploring the Power of Turbo Streams & Action Cable | RailsConf2023
kevinliebholz
36
6.2k
GraphQLの誤解/rethinking-graphql
sonatard
73
11k
It's Worth the Effort
3n
187
29k
The World Runs on Bad Software
bkeepers
PRO
72
12k
Become a Pro
speakerdeck
PRO
30
5.7k
Improving Core Web Vitals using Speculation Rules API
sergeychernyshev
21
1.3k
Measuring & Analyzing Core Web Vitals
bluesmoon
9
700
Sharpening the Axe: The Primacy of Toolmaking
bcantrill
46
2.6k
The Psychology of Web Performance [Beyond Tellerrand 2023]
tammyeverts
49
3.2k
Transcript
原 弥⿇⼈ CPFair: Personalized Consumer and Producer Fairness Re-ranking for
Recommender Systems IR Reading 2022秋 2022/11/12 筑波⼤学 Naghiaei, Mohammadmehdi, Hossein A. Rahmani, and Yashar Deldjoo. SIGIR2022
論⽂の概要 l 別々に扱われることが多かったアイテムとユーザーの公平性を 同時に最適化することの重要性を指摘 l プラットフォーム上の消費者、提供者の両⽅の公平性を最適化 (CP-fairness)を⾏う再ランキング⼿法を提案 l 8つのデータセットでの実験の結果、消費者-提供者の公平性を ⾼めつつ精度を向上させることを実証
2
CP-Fairnessとは 3 消費者 プラットフォームの 推薦システム 提供者 消費者・提供者が望むこと 良いアイテムを⾒つけたい︕ ⾃分のアイテムを⾒つけてほしい︕
CP-Fairnessとは 4 消費者 プラットフォームの 推薦システム 提供者 実際には ⼀部の提供者のアイテム だけ表⽰されやすい ⼀部のユーザーが良い
推薦を受けやすい 消費者・提供者の両⽅を公平にしたい︕ バイアスの発⽣
公平性を考慮しないモデルの場合 5 アクティブなユーザーが⾮アクティブ なユーザーよりもはるかに⾼い性能 消費者サイド 提供者サイド Short-head(⼈気)アイテムがLong-tail(不⼈気) アイテムより表⽰割合がはるかに⾼い 消費者・提供者の両⽅で不公平な状況が発⽣
提案⼿法 6 公平性指標 : 消費者 提供者 ・・・ Activeなユーザーグループ ・・・ Inactiveなユーザーグループ
Binaryの推薦⾏列 精度(nDCG, Recallなど) ・・・ 表⽰回数の多いアイテムグループ ・・・ 表⽰回数の少ないアイテムグループ アイテムの表⽰回数 値が⼩さいほど公平
提案⼿法 7 再ランキングアルゴリズム 𝒊𝟏 𝒊𝟐 ・・・ 𝒊𝑲 𝒖𝟏 1 1
・・・ 0 𝒖𝟐 0 0 ・・・ 1 ・・・ ・・・ ・・・ 0 𝒖𝒏 0 0 0 1 最適化問題 制約条件 消費者の公平性 提供者の公平性 式全体を最⼤化する2値⾏列𝑨を求める ⾏列𝑨のイメージ 全体の満⾜度最⼤化 (通常の推薦) 𝑆!" : ユーザーとアイテムの関連度スコア 𝜆# , 𝜆$ : 公平性を制御するハイパーパラメータ 0 ≤ 𝜆! , 𝜆" ≤ 1 推薦モデルによって事前に取得 貪欲法を⽤いることで多項式時間で解くことが可能
実験設定 8 データセット ベースライン • PF • WMF • NueMF
• VAECF グループ分け : アクティビティ上位5%をactive、残りをinactive ⼈気アイテム上位20%をshort-head、残りのアイ テムをlong-tail : 評価指標 𝐷𝐶𝐹 : 𝐷𝑃𝐹 : 𝑚𝐶𝑃𝐹 : 消費者の公平性 提供者の公平性 両者の公平性 𝑤 = 0.5 ハイパーパラメータ
結果 9 ※ スペースの都合上Epinionのみ 精度を犠牲にせずに両者の公平性を改善 両者の公平性 精度 両者の公平性
まとめ 10 l 消費者・提供者の両⽅の視点から公平性を考慮した再ランキング ⼿法を提案 l 推薦精度を低下させることなく公平性を保つことができる CPFair: Personalized Consumer
and Producer Fairness Re-ranking for Recommender Systems
Appendix
公平性に関する研究 12 消費者・提供者の両⽅ 公平な推薦システムに関する研究の種類 公平性の研究で消費者・提供者両⽅着⽬した 研究は少ない (改善アルゴリズムに関してはわずか3.6%) 消費者 提供者
Fair Re-ranking 13 • この研究では採⽤しない(紹介のみ) • 0 ≤ 𝐴!" ≤
1と制約を緩和することで 多項式時間で解くことが可能 アルゴリズム1 𝑨∗を求める
Fair Re-ranking Greedy 14 アルゴリズム2 • この研究で採⽤ • 最悪計算量は𝑂(𝑛 ×
𝑁) 公平なレコメンドリスト𝑳𝑲 𝑭 (𝒖)を求める
結果 15 • 推薦アルゴリズムによってバ イアスを増幅しやすいものが ある • P-fairnessの最適化はmCPFを 減少させやすい •
CP-fairnessアルゴリズムは精 度を落とさず公平性を実現で きる
全データセットでの結果 16 推薦精度とmCPF nDCG@10 全データセットにおいて同等の精度と⾼い公平性
パラメータ𝜆の影響 17 𝜆が⼤きくなる → 公平になるが精度の低下 𝜆が⼩さくなる → 公平性が低下するが精度が増加 トレードオフ 𝜆#
: 消費者 𝜆$ : 提供者 「精度中⼼」の挙動 「露出中⼼」の挙動 アイテムの露出はあまり変わらない 精度とアイテムの露出両⽅に影響