Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
【論文ゼミ】SSE-PT: Sequential Recommendation Via Per...
Search
Sponsored
·
Your Podcast. Everywhere. Effortlessly.
Share. Educate. Inspire. Entertain. You do you. We'll handle the rest.
→
Yamato Hara
October 07, 2021
Research
0
160
【論文ゼミ】SSE-PT: Sequential Recommendation Via Personalized Transformer
計算知能・マルチメディア研究室 論文ゼミ
紹介論文:
https://dl.acm.org/doi/10.1145/3383313.3412258
Yamato Hara
October 07, 2021
Tweet
Share
More Decks by Yamato Hara
See All by Yamato Hara
【IR Reading2022秋】 CPFair: Personalized Consumer and Producer Fairness Re-ranking for Recommender Systems
yamato0811
1
370
【論文ゼミ】Personalized Transfer of User Preferences for Cross-domain Recommendation
yamato0811
0
350
Other Decks in Research
See All in Research
Can AI Generated Ambrotype Chain the Aura of Alternative Process? In SIGGRAPH Asia 2024 Art Papers
toremolo72
0
140
AI in Enterprises - Java and Open Source to the Rescue
ivargrimstad
0
1.1k
2026-01-30-MandSL-textbook-jp-cos-lod
yegusa
0
230
視覚から身体性を持つAIへ: 巧緻な動作の3次元理解
tkhkaeio
0
190
Multi-Agent Large Language Models for Code Intelligence: Opportunities, Challenges, and Research Directions
fatemeh_fard
0
120
【NICOGRAPH2025】Photographic Conviviality: ボディペイント・ワークショップによる 同時的かつ共生的な写真体験
toremolo72
0
170
存立危機事態の再検討
jimboken
0
240
Mamba-in-Mamba: Centralized Mamba-Cross-Scan in Tokenized Mamba Model for Hyperspectral Image Classification
satai
3
600
都市交通マスタープランとその後への期待@熊本商工会議所・熊本経済同友会
trafficbrain
0
130
ウェブ・ソーシャルメディア論文読み会 第36回: The Stepwise Deception: Simulating the Evolution from True News to Fake News with LLM Agents (EMNLP, 2025)
hkefka385
0
160
Ankylosing Spondylitis
ankh2054
0
120
Community Driveプロジェクト(CDPJ)の中間報告
smartfukushilab1
0
170
Featured
See All Featured
Effective software design: The role of men in debugging patriarchy in IT @ Voxxed Days AMS
baasie
0
230
It's Worth the Effort
3n
188
29k
Why You Should Never Use an ORM
jnunemaker
PRO
61
9.7k
ピンチをチャンスに:未来をつくるプロダクトロードマップ #pmconf2020
aki_iinuma
128
55k
The SEO identity crisis: Don't let AI make you average
varn
0
330
How To Speak Unicorn (iThemes Webinar)
marktimemedia
1
380
16th Malabo Montpellier Forum Presentation
akademiya2063
PRO
0
53
Design of three-dimensional binary manipulators for pick-and-place task avoiding obstacles (IECON2024)
konakalab
0
350
Measuring Dark Social's Impact On Conversion and Attribution
stephenakadiri
1
130
Bootstrapping a Software Product
garrettdimon
PRO
307
120k
jQuery: Nuts, Bolts and Bling
dougneiner
65
8.4k
brightonSEO & MeasureFest 2025 - Christian Goodrich - Winning strategies for Black Friday CRO & PPC
cargoodrich
3
110
Transcript
論⽂紹介 原 弥⿇⼈ 0 SSE-PT: Sequential Recommendation Via Personalized Transformer
⽬次 • 論⽂の概要 • どんな分野か • 先⾏研究 • 提案⼿法 •
実験 • まとめ・疑問点 1
論⽂の概要 2 論⽂情報 タイトル : SSE-PT: Sequential Recommendation Via Personalized
Transformer 引⽤数 : 22回 学会 : RecSys September 22-26, 2020 レコメンド分野のトップカンファレンス 著者情報 著者 : Liwei Wu, Shuqing Li, Cho-Jui Hsieh, James Sharpnack 所属 : University of California, Davis University of California, Los Angles
論⽂の概要 3 • SSE-PTと呼ばれるTransformerベースのモデルでsequential recommendationの問題を解決した • ユーザーエンベディングを追加することでパーソナライズ • SSE正則化を⽤いて過学習を防ぐ •
5つのデータセットにおいてSoTAを達成
どんな分野か 4 Recommendationの種類 • General Recommendation • Graph Recommendation •
Knowledge Aware Recommendation • Sequential Recommendation ユーザーの好み・嗜好は固定ではなく変化するものという仮定
どんな分野か 5 猿 も ⽊ から 落ちる Sequential Recommendation NLP
次単語予測
どんな分野か 6 ⾃然⾔語処理の発展に伴うレコメンドシステムの遷移
先⾏研究 7 Kang, Wang-Cheng, and Julian McAuley. "Self-attentive sequential recommendation."
ICDM2018 SASRec Sequential RecommendationにTransformerを適⽤したモデル ユーザーにパーソナライズされていない︕ Transformer
提案⼿法 8 SSE-PT ユーザーベクトルを追加︕
提案⼿法 9 Embedding Layer 𝑣 ∶ アイテム 𝑢 ∶ ユーザー
ベクトル化 ⻑さ𝑇に満たないときはpaddingとして𝟎で埋める
提案⼿法 10 Transformer Encoder
提案⼿法 11 Transformer Encoder ⼊⼒ 出⼒
提案⼿法 12 Transformer Encoder • Wは学習によって変化していく • Wによって柔軟に
提案⼿法 13 Transformer Encoder ⼆層のニューラルネットワーク
提案⼿法 14 Prediction Layer ︓Transformer encoderの最後の タイムスタンプにおけるoutput : 時間 𝑡
でユーザー 𝑖 がアイテム 𝑙 を選ぶ確率 : loss関数 次に選んだであろうアイテム Log(1) = 0 Log(1-0) = 0 類似度
提案⼿法 15 SSE-PT ベクトル化 前後関係を考慮したベクトル
提案⼿法 16 Stochastic Shared Embeddings 2019年に同著者らが発表した⼿法 Wu, Liwei, et al.
"Stochastic shared embeddings: Data-driven regularization of embedding layers.” (2019) ある⼀定の確率でエンベディングを他のものと置き換える
実験 18 環境 CPU : 40-core Intel Xeon E5-2630 v4
@2.20GHz GPU : GTX 1080 データセット • Steam dataset • Movielens1M, Movielens10M • Amazon product review dataset(Beauty, Games) 評価指標 • Recall ・・・ユーザが実際に嗜好したアイテムのうちレコメンドリストでカバーした割合 • NDCG・・・おすすめ順の適合度を合計し,正規化したもの
実験 19 SSE-PTを⻑いシーケンスでも対応できるようにした版 (性能⽐較)
実験 20 (アテンションの可視化)
実験 21 (Training Speed)
疑問点 22 • 未知のユーザーが来たら推論がうまくいかないのではないか • Positive itemとnegative itemのリストはどのように作成しているのか
まとめ 23 • SSE-PTと呼ばれるTransformerベースのモデルでsequential recommendationの問題を解決した • ユーザーエンベディングを追加することでパーソナライズ • SSE正則化を⽤いて過学習を防ぐ •
5つのデータセットにおいてSoTAを達成
Appendix 24