Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
機械学習用のGPUマシンのパーツ選びと組み立て方
Search
yasubei
November 09, 2019
How-to & DIY
0
470
機械学習用のGPUマシンのパーツ選びと組み立て方
yasubei
November 09, 2019
Tweet
Share
More Decks by yasubei
See All by yasubei
学生企業のプロジェクトオンボーディング
yasubei
0
310
もう絶望しない!やると良いってススメられるけど微妙に腰が重い競プロを今日からはじめよう会
yasubei
0
190
PythonBeginners沖縄 #32 / step4 / プログラミングはじめ
yasubei
0
50
BegiLab #27 ベイズ勉強会(56) FactorAnalysis
yasubei
0
270
ベイズ・EMアルゴリズムの紹介
yasubei
2
210
Python/機械学習のざっくり用語解説
yasubei
1
250
分析前処理で手軽に並列処理するために守っておくと良いこと
yasubei
1
380
ベイズ勉強会メモ#8
yasubei
0
190
ベイズメモ_7.pdf
yasubei
0
130
Other Decks in How-to & DIY
See All in How-to & DIY
未来大生の胃を支える函館グルメ
deflis
0
580
AWSと学生支援 - Education-JAWS #0
awsjcpm
1
210
ATOMS3R-CAMとClaude SKILLSでタイムラプスチャレンジ #iotlt
n0bisuke2
0
190
ORBBEC会社概要 製品カタログ 2024 11 10
takasumasakazu
0
210
Node-REDで制御できるエッジカメラのreCameraを触る #iotlt #JLCPCB #recamera
n0bisuke2
0
140
JAWS-UG と AWS - JAWS-UG 沖縄 Cloud on the Beach 2025
awsjcpm
0
120
JAWS-UG/AWSコミュニティプログラムのご紹介 - JAWS-UG 佐賀
awsjcpm
2
190
家具家電付アパートの自室の冷蔵庫をスマートIoT化してみた!
scbc1167
0
150
評価のギャップから紐解く、「評価軸」と「ソフトスキル」の重要性
blajir
2
130
JAWS-UG Community Upadate - JAWS-UG 熊本
awsjcpm
2
190
AWS Community Day 2024: Using AWS to build a launchable knowledge rocket 👉 Organize knowledge, accelerate learning and understand AI in the process
dwchiang
0
260
ネガティブをねじ伏せ、n=1のキャリアに変える技術
subroh0508
1
140
Featured
See All Featured
Faster Mobile Websites
deanohume
310
31k
Design of three-dimensional binary manipulators for pick-and-place task avoiding obstacles (IECON2024)
konakalab
0
320
Between Models and Reality
mayunak
0
150
From π to Pie charts
rasagy
0
94
Let's Do A Bunch of Simple Stuff to Make Websites Faster
chriscoyier
508
140k
Breaking role norms: Why Content Design is so much more than writing copy - Taylor Woolridge
uxyall
0
120
How STYLIGHT went responsive
nonsquared
100
6k
Building Flexible Design Systems
yeseniaperezcruz
330
39k
svc-hook: hooking system calls on ARM64 by binary rewriting
retrage
1
32
The Organizational Zoo: Understanding Human Behavior Agility Through Metaphoric Constructive Conversations (based on the works of Arthur Shelley, Ph.D)
kimpetersen
PRO
0
200
RailsConf 2023
tenderlove
30
1.3k
The B2B funnel & how to create a winning content strategy
katarinadahlin
PRO
0
200
Transcript
ࠓ ि ͷ Θ ͔ Β Μ ઌ ੜ (16Ϛγϯ
͕ Θ͔ΒΜ 1ZUIPO#FHJOOFSTԭೄΦʔΨφΠβʔ ͐͢
ࣗݾհ :BTVCFJ ͐͢ ZBTVCFJUXJ ZBTVIBSVTV[VLJ IUUQTIVHLVODPN ΤϯδχΞͰ͢ɻ ࡳຈͰήʔϜ։ൃɹˠɹԭೄͰ։ൃੳͳͲΛ )VHLVOͱ)VHLVO%BUBͱ͍͏ձࣾͬͯ·͢ɻ ֶੜ͞ΜͱҰॹʹࣄͯ͠8JO8JOͳؔΛங͘ͷ͕͖Ͱ͢ɻ
ۙࠒົʹݹ͍ήʔϜ͕Γͨ͘ͳΔ UXFFUͯͨ͠ͷʮ'MBQQZʯʮάϥσΟεʯʮελʔιϧδϟʔʯʮ3*%(&3"$&3ʯ ʮ';&30ʯ ͨͿΜಉੈʹ͔͠Θ͔ΒΜ͡Όͳ͍͔ͱࢥΘΕΔ
͍͠Ό
None
None
ڵຯͷ͋Δํ IVHLVODPN ΛݟͯΈ͍ͯͩ͘͞ ɾТɾ ϊγ
ࠓͷ͓
ࠓͷ͓ (16ϚγϯͰ͢ɻ ͦ͏ͳ͍͔͍
ࠓશʹझຯͰ͢ தೋපͰ͢ ͝ΊΜͳ͍͞
"HFOEB (16ϚγϯͬͯͳΜͶΜ ύʔπબͼ ߪೖͨ͠ͷ ·ͱΊ
(16ϚγϯͬͯͳΜͶΜ Θ ͔ Β Μ
·͊ҰݴͰ͍͏ͱ ΊͬͪΌػցֶश͍ϚγϯͰ͢
Ͳͷ͘Β͍͍ͷ͔ ͍͍ͩͨ̍̌ഒ͘Β͍ ͍ʢࡶʣ
(16Λ͏ϥΠϒϥϦ 5FOTPS'MPX͕༗໊
ྫ͑ ը૾ೝࣝΓ͍ͨͳʔ
ݕࡧ͢Ε͙͢ʹݟ͔ͭΔ ݕࡧʹ༻͢Δϫʔυ #FHJOOFSTͷTMBDLͳͲͰ ฉ͍ͯ͘ΕΕ͑·͢Α
ແྉͰ͑Δ(16 ͳ͍ͷʁ
ແྉͰ͑Δ(16 (PPHMF$PMBCPSBUPSZ ɾ͑Δ͚Ͳ͍ ɾ̍̎࣌ؒܦͭͱফ͑Δ
ͱ͍͏Θ͚Ͱ ങ͏͜ͱʹ͠·ͨ͠
ͪͳΈʹ ༗ྉͳΒ Ϋϥυʹ(16Ϛγϯ ͋Γ·͢ɻߴ͍͚Ͳɻ
(16ͬͯͳΜͶΜ ·ͱΊ ɾΊͬͪΌ͍ ɾ͏ʹϥΠϒϥϦ͕ඞཁ ɾແྉͰ͑Δͷ͋Δ ɾΫϥυ͋Δ
ύʔπબͼ Θ ͔ Β Μ
(16ͷछྨ
ϝʔΧʔ ػցֶशʹ͑Δͷ O7*%*"ͷ(16͚ͩ ʢݫີʹݴ͏ͱ30$N͕͋ΔͷͰ͑ͳ ͍Θ͚Ͱͳ͍͕શྗͰ͓͢͢Ί͠ͳ͍ʣ ˕ ☓
O7*%*"ͷ(16ͷछྨ ͨ͘͞Μ͋Γ·͕͢ جຊతʹੑೳ͕ҧ͏͚ͩ ༧ࢉʹԠͯ͡બͿ ສԁʙສԁ͘Β͍͕͍͍
O7*%*"ͷ(16ͷछྨ தʹ͜Μͳͷ͋Γ·͢ɻ ສυϧ ങ͑Δํͪ͜ΒΛ ͓͢͢Ί͠·͢
(16Ҏ֎ͷύʔπ
(16Ҏ֎ͷύʔπ ଞͷύʔπ͕͍ͱ શମతͳύϑΥʔϚϯε͕ ্͕Γ·ͤΜ ͳͷͰݫબ͠·͢٩ bТ` و
ύʔπબͼ ·ͱΊ ɾϝʔΧʔO7*%*"ΛબͿ ػցֶश༻ʣ ɾ༧ࢉʹԠͯ͡(16બΔ ɾ(16Ҏ֎ͷύʔπ͖ͪΜͱݫબ͢Δ
࣮ࡍʹߪೖͨ͠ͷ Θ ͔ Β Μ
༧ࢉ ̏̌ສ 5XJUUFSͰݕࡧ͢ΔͱಡΊ·͢ˠɹ!ZBTVCFJUXJTJODFVOUJM
(16
$16
ϚβʔϘʔυ
ਫྫྷ
.FNPSZ
44%
)%%
ిݯ
έʔε
04
࣮අ ສ 5XJUUFSͰݕࡧ͢ΔͱಡΊ·͢ˠɹ!ZBTVCFJUXJTJODFVOUJM
͏ͪͷΦϑΟεདྷΔͱ ͍͡Γ͍ͨ์ͳͷͰ ৮Γ͍ͨํͲ͏ͧ͆ ߏங͔Βग़དྷ·͢ʂ
·ͱΊ Θ ͔ Β Μ
·ͱΊ (16ͬͯͳΜͶΜ ύʔπબͼʹ͍ͭͯ ࣮ࡍʹߪೖͨ͠ͷʹ͍ͭͯ ʹ͍ͭͯհ͠·ͨ͠ ʆŋТŋ ʎ
ଞʹΓ͍ͨ͜ͱ͕͋Γ·ͨ͠Βؾܰʹ͝૬ஊͩ͘͞ ͍ɻ
Θ͔ΒΜઌੜγϦʔζʹ͍ͭͯ Θ ͔ Β Μ
Θ͔ΒΜઌੜγϦʔζ ڵຯ͕͋ΔํաڈͷγϦʔζݟͯΈͯ ͍ͩ͘͞ʂ ̓ݕఆ ମݕ ฒྻॲཧ
༻ޠͷઆ໌ ϕΠζ
©)VHLVOJOD CONFIDENTIAL ͝ਗ਼ௌ͋Γ͕ͱ͏͍͟͝·ͨ͠(ʆŋωŋ´)ʎ !ZBTVCFJUXJ ZBTVIBSVTV[VLJ IUUQTIVHLVODPN ← ྑ͔ͬͨΒ͓༑ୡʹ ͳΓ·͠ΐ͏ʙ