Upgrade to PRO for Only $50/Year—Limited-Time Offer! 🔥
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
第3回予測市場勉強会資料・Googleにおける社内予測市場
Search
Yuya-Furusawa
September 09, 2019
Science
0
570
第3回予測市場勉強会資料・Googleにおける社内予測市場
2019/09/09
第3回予測市場勉強会
「Googleにおける社内予測市場」
https://eagna.io/
Yuya-Furusawa
September 09, 2019
Tweet
Share
More Decks by Yuya-Furusawa
See All by Yuya-Furusawa
CROP説明(仮)
yfurusawa
0
37
社内予測市場:説明会資料
yfurusawa
0
79
第4回予測市場勉強会資料・予測市場を1から学ぼう!
yfurusawa
0
260
Nefrock勉強会資料「予測市場の理論と概要」
yfurusawa
0
59
第1回予測市場勉強会資料・予測市場の概要と理論
yfurusawa
0
290
Other Decks in Science
See All in Science
Hakonwa-Quaternion
hiranabe
1
160
baseballrによるMLBデータの抽出と階層ベイズモデルによる打率の推定 / TokyoR118
dropout009
2
630
白金鉱業Vol.21【初学者向け発表枠】身近な例から学ぶ数理最適化の基礎 / Learning the Basics of Mathematical Optimization Through Everyday Examples
brainpadpr
1
440
【RSJ2025】PAMIQ Core: リアルタイム継続学習のための⾮同期推論・学習フレームワーク
gesonanko
0
430
2025-06-11-ai_belgium
sofievl
1
210
Algorithmic Aspects of Quiver Representations
tasusu
0
120
データマイニング - ノードの中心性
trycycle
PRO
0
320
データマイニング - グラフデータと経路
trycycle
PRO
1
260
機械学習 - ニューラルネットワーク入門
trycycle
PRO
0
900
Performance Evaluation and Ranking of Drivers in Multiple Motorsports Using Massey’s Method
konakalab
0
120
機械学習 - DBSCAN
trycycle
PRO
0
1.4k
安心・効率的な医療現場の実現へ ~オンプレAI & ノーコードワークフローで進める業務改革~
siyoo
0
420
Featured
See All Featured
Into the Great Unknown - MozCon
thekraken
40
2.2k
Put a Button on it: Removing Barriers to Going Fast.
kastner
60
4.1k
The Power of CSS Pseudo Elements
geoffreycrofte
80
6.1k
Making Projects Easy
brettharned
120
6.5k
What's in a price? How to price your products and services
michaelherold
246
13k
Connecting the Dots Between Site Speed, User Experience & Your Business [WebExpo 2025]
tammyeverts
10
730
The Illustrated Children's Guide to Kubernetes
chrisshort
51
51k
Evolution of real-time – Irina Nazarova, EuRuKo, 2024
irinanazarova
9
1.1k
Large-scale JavaScript Application Architecture
addyosmani
515
110k
Refactoring Trust on Your Teams (GOTO; Chicago 2020)
rmw
35
3.3k
Leading Effective Engineering Teams in the AI Era
addyosmani
8
1.3k
The World Runs on Bad Software
bkeepers
PRO
72
12k
Transcript
Googleʹ͓͚Δࣾ༧ଌࢢ ༧ଌࢢษڧձୈ̏ճ ݹᖒ ༏ 2019/09/09
Table of Contents • ࣗݾհ • ࣾ༧ଌࢢʹ͍ͭͯ • Googleʹ͓͚Δ༧ଌࢢ •
͓ΘΓʹ • Q&A
ࣗݾհ • ݹᖒ ༏ • ౦େܦࡁM2 • ઐɿήʔϜཧɺωοτϫʔΫཧ • ؔ৺ɿ༧ଌࢢɺ҉߸௨՟ɺҼՌਪ
• ༧ଌࢢαʔϏε”Eagna”ΛӡӦɾ։ൃͯ͠·͢
ࣾ༧ଌࢢʹ͍ͭͯ
༧ଌࢢ • ʮ܈ऺͷӥஐʯͱʮࢢϝΧχζϜʯΛ༻͍ ͨɺকདྷͷग़དྷࣄΛ༧͢ΔͨΊͷࢢͷΑ ͏ͳͷ • ਖ਼֬ͳ༧ଌɺϦΞϧλΠϜͷ༧ଌ͕Մೳ • ৄ͘͠ୈ̍ճͷεϥΠυΛࢀর
ࣾ༧ଌࢢ • ձࣾʹͱͬͯେࣄͳग़དྷࣄΛ༧͢ΔͨΊʹ ձࣾʹઃஔ͞Εͨ༧ଌࢢ • ࢀՃऀࣾһ͓ΑͼؔऀʹݶΒΕΔ • ϧʔϧใुͳͲձ͕ܾࣾΊΔ • ࣾ༧ଌࢢઐ༻ͷιϑτΣΞΛൢചͯ͠
͍Δձࣾ͋Γ·͢(Inklingࣾ)
ࣾ༧ଌࢢ͍Ζ͍Ζ • Google • Ford • HP • Microsoft •
ͳͲͳͲɺɺɺ
ࣾ༧ଌࢢಛ༗ͷ • τϨʔμʔͷগͳ͞ʢThin Market Problemʣ • औҾ૬ख͕ݟ͔ͭΒͳ͍Մೳੑ • ࢀՃऀ͕ݶΒΕ͍ͯΔ •
ใͷଟ༷ੑ͕ࣦΘΕΔՄೳੑ • ࣾ༧ଌࢢ͜ΕΒͷΛ๊͑ͳ͕Βਫ਼ ͷߴ͍༧ଌ͕Ͱ͖Δ͔ʁʁ
Googleʹ͓͚Δ༧ଌࢢ
Google Prediction Market • 2005ɺBo CowgillΒʹΑͬͯ։࢝ • ܦࡁֶऀHal Varianͷαϙʔτ •
ͦͷ༧ଌͷਖ਼֬ੑͳͲ͔Βଞͷاۀࣾ༧ ଌࢢΛͭ͘ΔΑ͏ʹ • ༧ଌࢢ͕͘ΒΕΔΑ͏ʹͳͬͨܖػ
Why Google? • GoogleͷΧϧνϟʔ • ʮۈ࣌ؒͷ20ˋΛࣗͷ͖ͳϓϩδΣΫ τʹͯͯྑ͍ʯ • ྫ: GmailɺGoogle
News
GPMͷత • “Objectives and Key Goals(OKR)”ͱݺΕΔ ଌఆՄೳͳࣾͷॏཁࣄ߲ʹ͍ͭͯͷใΛ ू͢Δ • ࣾͷOKRͷ͏ͪɺ͓Αͦ60%ΛΧόʔͯ͠
͍ͨ
Types of Markets • Demand Forecasting • ྫɿࠓ࢛ظͷGmailͷϢʔβʔొ͍ ͘Β͔ʁ •
Company News • ྫɿGoogleͷϞεΫϫΦϑΟεΦʔϓϯ ͢Δ͔ʁ
Types of Markets • Industry News • ྫɿAppleIntelϕʔεͷMacΛൃച͢Δ͔ʁ • Fun
• ྫɿNBAϑΝΠφϧͷ༏উνʔϜʁ
GPMͷΈ • μϒϧΦʔΫγϣϯํࣜͰചങ • `` Gooble”ͱݺΕΔαʔϏε௨՟Λ༻͍ͯऔ ҾΛ͓͜ͳ͏ • ̏ϲ݄ʹҰɺ10,000GoobleΛड͚औΔ •
Gooble͘͡ͷνέοτͱަ͞ΕΔʢޙड़ʣ
GPMͷΈ • GoogleࣾһͳΒ୭ͰࢀՃ͢Δ͜ͱ͕Ͱ͖Δ • ͋͑ͯࢀՃऀʹ੍ݶΛઃ͚ͳ͍ʢΠϯαΠ μʔΛڐ͢ʣ • ࣾһ͕͍࣋ͬͯΔใΛޮతʹϚʔέοτ ʹөͤ͞Δ
ใु • ࠷ऴతʹอ༗͍ͯ͠ΔGooble͘͡ͷνέοτʹ ม͞ΕΔ • ӡӦνʔϜ͕̒͘͡ݸΛϥϯμϜʹબͿ • બΕͨνέοτ$1000ͱަ͞ΕΔ • GoobleΛগ͠Ͱ૿ͦ͏ͱ͢ΔΠϯηϯςΟϒ
Tγϟπใु • ۚમతใु͋Μ·Γັྗత͡Όͳ͍ɻɻɻ • ใुΛTγϟπʹ͢Δ͜ͱͰࢀՃΛଅ͢ • ʢগͳ͘ͱGoogleͰʣTγϟπ໊͕ͷ ΘΓɺۚમΑΓ໊
རɿਖ਼֬ͳ༧ଌ
Two-outcome
Five-outcome
͕࣌ؒܦͭʹͭΕinformativeʹ
རɿࣾͷަྲྀ͕׆ൃʹ • ैۀһͷਓ͕͕ؒؔΔ • ใुΛಘΔͨΊʹ͍ΖΜͳͱใަΛߦ͓ ͏ͱ͢Δ • ձͷ͖͔͚ͬʹͳΔ • ʮ༧ଌࢢैۀһಉ࢜ͷձͷͳͷͩʯ
ൃݟɿཧతڑͷॏཁੑ • ಉ͡ॴʹ͍ΔτϨʔμʔͨͪಉ࣌ʹಉ͡ औҾΛߦ͏ʹ͋Δ • σεΫͷॴपғͷ͕ؒมΘΔͱߦಈ มΘΔ • ʮߟ͑ํཧతͳۙ͞ʹΑܾͬͯ·Δʯ
GPMͷݱࡏ • ݱࡏऴྃʢ͓ͦΒ͘ʣ • ͱͱͷӡӦϝϯόʔ͕࣌ؒΛׂ͚ͳ͘ ͳͬͨͨΊ • Bo Cowgill͕PhDऔΓʹߦͬͨ
·ͱΊ
ࣾ༧ଌࢢͷར • ਫ਼ͷߴ͍༧ଌ͕ಘΒΕΔʢʹ͋Δʣ • ࢢௐࠪઐՈͷώΞϦϯάɺैདྷͷ खஈʹൺͯɺۚમతɾਓతίετ͕͍ • ैۀһؒͷަྲྀ͕׆ੑԽ͢ΔͳͲͷ෭࡞༻
Remaining Problems • ಘΒΕͨ༧ଌΛͲ͏ҙࢥܾఆʹ༻͍Εྑ͍ ͷ͔ʹ͍ͭͯ·Ͱڭ͑ͯ͘Εͳ͍ • ಋೖͷ͠͞ • ηϯγςΟϒͳใΛެ։͢Δ͜ͱʹͳΔ •
طಘݖӹΛڴ͔͢
͓ΘΓʹ
ͬͱΓ͍ͨਓ • ʮී௨ͷਓͨͪΛ༬ݴऀʹม͑Δʰ༧ଌࢢʱͱ͍ ͏৽ઓུʯɺυφϧυɾτϯϓιϯ • Google Official Blog ``Putting crowd
wisdom to work” (https://googleblog.blogspot.com/2005/09/ putting-crowd-wisdom-to-work.html) • Prediction markets at Google(https:// www.slideshare.net/nimesh94/prediction-markets- at-google-gpm)
ͬͱΓ͍ͨਓ • “Corporate Prediction Markets: Evidence from Google, Ford, and
Firm X”, Cowgill and Zitzewitz, Review of Economic Studies, 2015 • “Using Prediction Markets to Track Information Flows: Evidence from Google”, Cowgill, Wolfers and Zitzewitz, 2009
Eagna • ”Eagna”ͱ͍͏αʔϏεΛӡӦɾ։ൃͯ͠·͢ • PCɺεϚϗͷϒϥβ্Ͱ༧ଌࢢΛແྉͰ ମݧͰ͖·͢ʢsign upඞཁʣ • Ϛʔέοτ͝ͱʹίΠϯΛ͢ΔͷͰɺͦ ΕΛͨ͘͞Μ૿͍ͯͩ͘͠͞ʂ
Eagna • ใु͋Γ·͢ʂ • ֫ಘͨ͠ίΠϯʹൺྫͯ֬͠తʹΪϑτ݊Λ Γ·͢ • eagna.ioͰݕࡧʂ • ϑΟʔυόοΫେܴͰ͢ʂ
༧ଌࢢษڧձ • ຊͷ༧ଌࢢίϛϡχςΟͱͯ͠ຖ݄ߦͬ ͍ͯ͘༧ఆͰ͢ • 10݄Γ·͢ • ࣌ɺձɺςʔϚconnpassͰʂ • ੋඇ࣍ճ͝ࢀՃԼ͍͞ʂ
Q&A
͋Γ͕ͱ͏͍͟͝·ͨ͠ʂ