Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
第4回予測市場勉強会資料・予測市場を1から学ぼう!
Search
Yuya-Furusawa
October 15, 2019
Science
0
260
第4回予測市場勉強会資料・予測市場を1から学ぼう!
第4回予測市場勉強会で使用したスライドです。
Eagna(
https://eagna.io/
)
Yuya-Furusawa
October 15, 2019
Tweet
Share
More Decks by Yuya-Furusawa
See All by Yuya-Furusawa
CROP説明(仮)
yfurusawa
0
36
社内予測市場:説明会資料
yfurusawa
0
79
第3回予測市場勉強会資料・Googleにおける社内予測市場
yfurusawa
0
560
Nefrock勉強会資料「予測市場の理論と概要」
yfurusawa
0
56
第1回予測市場勉強会資料・予測市場の概要と理論
yfurusawa
0
280
Other Decks in Science
See All in Science
05_山中真也_室蘭工業大学大学院工学研究科教授_だてプロの挑戦.pdf
sip3ristex
0
630
データベース11: 正規化(1/2) - 望ましくない関係スキーマ
trycycle
PRO
0
940
局所保存性・相似変換対称性を満たす機械学習モデルによる数値流体力学
yellowshippo
1
310
地質研究者が苦労しながら運用する情報公開システムの実例
naito2000
0
260
データベース01: データベースを使わない世界
trycycle
PRO
1
770
データマイニング - グラフ構造の諸指標
trycycle
PRO
0
170
My Favourite Book in 2024: Get Rid of Your Japanese Accent
lagenorhynque
1
110
Explanatory material
yuki1986
0
400
機械学習 - ニューラルネットワーク入門
trycycle
PRO
0
850
academist Prize 4期生 研究トーク延長戦!「美は世界を救う」っていうけど、どうやって?
jimpe_hitsuwari
0
160
NASの容量不足のお悩み解決!災害対策も兼ねた「Wasabi Cloud NAS」はここがスゴイ
climbteam
0
120
機械学習 - 授業概要
trycycle
PRO
0
240
Featured
See All Featured
Understanding Cognitive Biases in Performance Measurement
bluesmoon
29
1.9k
Producing Creativity
orderedlist
PRO
347
40k
The Invisible Side of Design
smashingmag
301
51k
Rails Girls Zürich Keynote
gr2m
95
14k
Facilitating Awesome Meetings
lara
55
6.5k
Making Projects Easy
brettharned
117
6.4k
Building Applications with DynamoDB
mza
96
6.6k
Learning to Love Humans: Emotional Interface Design
aarron
273
40k
Building an army of robots
kneath
306
46k
Gamification - CAS2011
davidbonilla
81
5.4k
Imperfection Machines: The Place of Print at Facebook
scottboms
268
13k
Navigating Team Friction
lara
189
15k
Transcript
༧ଌࢢΛ͔̍Βֶ΅͏ʂ ༧ଌࢢษڧձୈ̐ճ ݹᖒ ༏ 2019/10/15
Table of Contents • ࣗݾհ • ·ͣ༧ଌʹ͍ͭͯ • ༧ଌࢢͱʁ •
༧ଌࢢͷྑ͍ͱ͜ɾѱ͍ͱ͜ • ༧ଌࢢͷՄೳੑ • ͓ΘΓʹ • Q&A
ࣗݾհ • ݹᖒ ༏ • ౦େܦࡁM2 • ઐɿήʔϜཧɺωοτϫʔΫཧ • ؔ৺ɿ༧ଌࢢɺ҉߸௨՟ɺҼՌਪ
• ༧ଌࢢαʔϏε”Eagna”ΛӡӦɾ։ൃͯ͠·͢
·ͣ༧ଌʹ͍ͭͯ
༧ଌͷॏཁੑ • কདྷͷ༧ଌඇৗʹॏཁ དྷ݄ͷऩೖˠࠓͷങ͍ ͷधཁˠઃඋࢿɺϓϩϞʔγϣϯઓུ ޙͷੈքˠͷํ
None
༧ଌͱ͍͏ӦΈ • ੈͷதʹࢄΒ͍ͬͯΔใΛूͯ͠ɺকདྷ ʹؔ͢ΔใΛಋ͘ߦҝ • ͰͲͷΑ͏ʹใΛू͢Ε͍͍ͷ͔ʁ • ޮత͔ͭ؆୯ͳूํ๏ͩͱخ͍͠
༧ଌखஈ̍ɿઐՈʹฉ͘ • Pros • ৫ʹೲಘײΛੜΉ • Cons • ͓ۚͱ͕͔͔࣌ؒΔ •
ਖ਼ʹ͑ΔΠϯηϯςΟϒʁ • ਫ਼ͦΜͳʹߴ͘ͳ͍͔͠Εͳ͍ɺɺɺ
༧ଌखஈ̎ɿଟܾʢථʣ • Pros • ؆୯ʹ࣮ߦͰ͖Δ • ࢀՃऀ͕ฏʹѻΘΕΔ • Cons •
ਖ਼ʹථ͢ΔΠϯηϯςΟϒ͕ແ͍ • ใΛ͍࣋ͬͯΔਓͱ࣋ͬͯͳ͍ਓ͕ฏʹѻΘΕ ͯ͠·͏ • ථऀͷແؾྗԽ(Voter Apathy)
༧ଌखஈ̏ɿAIͰ༧ଌ • Pros • ༧ଌਫ਼͕ඇৗʹߴ͍ • Cons • େͳσʔλ͕ඞཁ •
σʔλ͕ͳ͍͜ͱͷ༧ଌ͍͠
1. ༧ଌΛਖ਼ʹݴ͏ΠϯηϯςΟϒ͕ແ͍ 2. ࣌ؒతɾۚમతίετ͕ߴ͍ 3. େྔ͔࣭ͭͷߴ͍σʔλ͕ඞཁ
ޮతʹਫ਼ͷߴ͍༧ଌ͕͍ͨ͠ʂʂʂ
༧ଌࢢͱʁ
༧ଌࢢ Prediction Market • ܈ऺͷӥஐͱࢢϝΧχζϜΛ༻͍ͨใू ϝΧχζϜɾ༧ଌखஈ • ଟͷࢀՃऀ͕ࣗͷ༧ʹैͬͯɺূ݊Խ ͞Εͨ༧Λചങ͢Δ •
ຊͰ͋·ΓΒΕͯ·ͤΜͶɺɺɺ
܈ऺͷӥஐ Wisdom of Crowds • 1ਓͷ༏Εͨఱ࠽͕Լ͢அΑΓɺී௨ͷਓ ͔ΒΔूஂ͕Լ͢அͷํ͕༏Ε͍ͯΔͱ ͍͏ݱ • ྫɿΰϧτϯڭतͱ༤ڇͷମॏͯେձ
ࢢϝΧχζϜ Market Mechanism • ܦࡁతΠϯηϯςΟϒʹΑΓޮతͳΛ ୡ • ʮൃݟతखଓ͖ͱͯ͠ͷڝ૪ʯbyϋΠΤΫ • ใूϝΧχζϜͱͯ͠ͷࢢ
༧ଌࢢͷ࣮ྫ • Hollywood Stock Exchange • ΞϝϦΧͷฮ༧ଌࢢɺөըͷ༧ଌઐ • Augur •
ϒϩοΫνΣʔϯ্ͷ༧ଌࢢ • Google • ࣾʹ༧ଌࢢΛઃஔ
༧ଌࢢͷΈ • τϥϯϓͱώϥϦʔͷͲͪΒ͕উ͔ͭΛ༧ଌ ͢Δ༧ଌࢢΛߟ͑·͠ΐ͏ʂ
༧ଌࢢͷΈ 1. τϥϯϓτʔΫϯͱώϥϦʔτʔΫϯΛൃߦ τϥϯϓ $1 $0 τϥϯϓউར τϥϯϓഊ ώϥϦʔ $1
$0 ώϥϦʔউར ώϥϦʔഊ
༧ଌࢢͷΈ 2. τʔΫϯͷചങΛ͢Δ • উͭͱ༧͢ΔํͷτʔΫϯΛങ͏ τϥϯϓ ώϥϦʔ τϥϯϓ͕উͭ ͱࢥ͏ͳΒ… ώϥϦʔ͕উͭ
ͱࢥ͏ͳΒ…
༧ଌࢢͷΈ 2. τʔΫϯΛചങ͢Δ • ͖ͳτʔΫϯΛ͖ͳ͚ͩങ͑Δ τϥϯϓ ώϥϦʔ ×̑ ×̑ ʑ͘Β͍ͩͱ
ࢥ͏ͳΒ…
༧ଌࢢͷΈ 2. τʔΫϯΛചങ͢Δ • ༧͕มԽͨ͠ΒͦΕʹԠͯ͡ചങ τϥϯϓ ώϥϦʔ ώϥϦʔ͕উͪͦ͏ͩ ͱͳͬͨΒ…
༧ଌࢢͷΈ 3. ݁Ռ͕ܾ·ͬͨͷͪɺ͍͕͠ߦΘΕΔ τϥϯϓ ώϥϦʔ
Ձ֨ͱ༧ଌ • Ձ͕֨ߴ͍ʹΈΜͳ͕༧͍ͯ͠Δ • Ձ֨ʹࢢͷ༧ଌ • ܦࡁతΠϯηϯςΟϒ͕ਖ਼֬ͳ༧ଌΛͨΒ ͢
Ձ֨ͱࣗͷ༧ଌ • ͍ͭങ͍ͬͯͭചΔ͖͔ʁ • ྫɿτϥϯϓτʔΫϯͷՁ͕֨$0.6ͷͱ͖ τϥϯϓ͕উͭ֬ 80% ظɿ$1 × 80%
= $0.8 > $0.6 30% ظɿ$1 × 30% = $0.3 < $0.6 ങͬͨํ͕ ྑ͍ ചͬͨํ͕ ྑ͍
༧ଌࢢͷϝΧχζϜ • Ձ֨ΛͲ͏ܾͬͯΊΔ͔ʁ • Ձ͕֨༧ଌΛදͯ͠΄͍͠ • ͦͷ༧ଌਖ਼֬ͳͷͰ͋ͬͯ΄͍͠ • ࣗͷ༧ଌ௨Γʹਖ਼ʹചങͯ͠΄͍͠
࿈ଓμϒϧΦʔΫγϣϯํࣜ Continuous Double Auction Mechanism • τʔΫϯΛചങ • ചΓจͱങ͍จΛͦΕͧΕఏग़ •
͕݅Ϛον͢Εఆ • גࣜࢢɺҝସࢢͳͲͱಉ͡Γํ
࿈ଓμϒϧΦʔΫγϣϯํࣜ Continuous Double Auction Mechanism • Thin Market Problem •
ಛʹબࢶ͕ଟ͘ͳΔͱ૬ख͕ݟ͔ͭΒͳ ͍Մೳੑ • No Trade Theorem • ૬ख͕औҾ͠Α͏ͱ͢ΔͳΒʹͦΕʹԠ͡ ͳ͍ํ͕ྑ͍
ϚʔέοτϝΠΧʔํࣜ Automated Market Maker Mechanism • ࢢͷཧऀͱऔҾΛߦ͏ • ཧऀ͔ΒτʔΫϯΛߪೖ͠ɺཧऀ͕ใु Λࢧ͏
• Ձ֨ΞϧΰϦζϜʹैܾͬͯఆ͞ΕΔ →ࠓճׂѪ͠·͢ʂ
༧ଌࢢͷྑ͍ͱ͜ɾѱ͍ͱ͜
͍͢͝ͱ͜Ζ 1. ༧ଌ͕ਖ਼֬ “Prediction Markets”, Wolfers and Zitzewitz
͍͢͝ͱ͜Ζ 2. ϦΞϧλΠϜੑ • Ձ֨(ʹ༧ଌ)ͷมԽ͕Θ͔Δ • χϡʔεͳͲͰ༧ଌ͕DynamicʹมԽ • ଞͷ༧ଌखஈʹݟΒΕͳ͍ಛੑ
“Prediction Markets”, Wolfers and Zitzewitz
͍͢͝ͱ͜Ζ 3. ใͷओମతͳ֫ಘ • औҾͰಘΛ͢ΔͨΊʹใΛͨ͘͞Μू ΊΔඞཁ͕͋Δ • ྫ͑ώϥϦʔͱτϥϯϓͲ͕ͬͪউ͔ͭ ʹ͍ͭͯ͘͢͝ௐΔΑ͏ʹͳΓ·͢
μϝͳͱ͜Ζ 1. ϚʔέοτͷσβΠϯ͕͍͠ 2. ๏తͳ • ຊͩͱṌത๏ͰΞτͰ͢^^ 3. ྲྀಈੑͷ֬อɺཧऀͷଛࣦ 4.
݁Ռͷղऍ͕͍͠
AIʹΑΔ༧ଌͱͷҧ͍ • ҧ͍ɿσʔλɾϞσϧΛඞཁͱ͠ͳ͍ • σʔλ͕ແ͍ɺऔΕͳ͍ྖҬ • Ϟσϧ͕ෳࡶͳྖҬ • ٯʹϦονͳσʔλɾཱ֬͞ΕͨϞσϧ͕͋ ΕAIͷํ͕༏Ε͍ͯΔ
༧ଌࢢઈରతʹ༏Εͨ༧ଌखஈͰͳ͍ Ή͠Ζଞͷ༧ଌखஈͱิతͳؔ
༧ଌࢢͷՄೳੑ
ࣾձɾ࣏ʹؔ͢Δ༧ଌ • ྫɿʮؖटձஊ͕Ҏʹ࣮ݱ͢Δ ͔ʁʯ • σʔλͰ༧ଌࠔ • Ϗδωεతʹඇৗʹॏཁͳ༧ଌ
͖݅ͷ༧ଌ • ྫɿʮফඅ੫Λ૿੫ͨ͠Βɺ̑ޙɺຊͷ ܦࡁ˓%Λ͑Δ͔ʁʯ • ࡦͷஅʹ͏͜ͱ͕Մೳ • ੈௐࠪͷΘΓ • ϙδγϣϯτʔΫͳ͘ͳΔʢʁʣ
ਅ࣮Λ͘(ʁ)༧ଌ • ྫɿʮްੜ࿑ಇলͷ౷ܭʹෆਖ਼͕͋Δ͔ʁʯ • ෦ͷਓͨͪෆਖ਼͕͋Δͱ༧ଌ͢ΔΠϯη ϯςΟϒ͕͋Δ • Ձ͕֨ߴ͔ͬͨΒʮͳΜ͔ո͍͠ɺɺɺʯͬ ͯͳΔ
͓ΘΓʹ
ͬͱΓ͍ͨਓ • ʮී௨ͷਓͨͪΛ༬ݴऀʹม͑Δʰ༧ଌࢢʱͱ͍ ͏৽ઓུʯɺυφϧυɾτϯϓιϯ • ʮʰΈΜͳͷҙݟʱҊ֎ਖ਼͍͠ʯɺδΣʔϜζɾ εϩΟοΩʔ • “Prediction Market
: Theory and Application”, Leighton Vaughan Williams
Eagna • ”Eagna”ͱ͍͏αʔϏεΛӡӦɾ։ൃͯ͠·͢ • PCɺεϚϗͷϒϥβ্Ͱ༧ଌࢢΛແྉͰ ମݧͰ͖·͢ʢsign upඞཁɺεϚϗਪʣ • Ϛʔέοτ͝ͱʹίΠϯΛ͢ΔͷͰɺͦ ΕΛͨ͘͞Μ૿͍ͯͩ͘͠͞ʂ
Eagna • ใु͋Γ·͢ʂ • ֫ಘͨ͠ίΠϯʹൺྫͯ֬͠తʹελόͱ͔ͷ Ϊϑτ݊Λͬͯ·͢ • eagna.ioͰݕࡧʂ • ϑΟʔυόοΫେେେܴͰ͢ʂ
None
༧ଌࢢษڧձ • ຊͷ༧ଌࢢίϛϡχςΟͱͯ͠ຖ݄ߦͬ ͍ͯ͘༧ఆͰ͢ • ࣌ɺձɺςʔϚconnpassͰʂ • ੋඇ࣍ճ͝ࢀՃԼ͍͞ʂ
Q&A
͋Γ͕ͱ͏͍͟͝·ͨ͠ʂ