Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Data Science BOOTCAMP Practices - Recommendation
Search
Yohei Munesada
May 09, 2017
Technology
0
210
Data Science BOOTCAMP Practices - Recommendation
レコメンデーションの制作演習のスライドです。中に解答例のリンクも掲載しています。
G's Academy Data Science Bootcamp
Yohei Munesada
May 09, 2017
Tweet
Share
More Decks by Yohei Munesada
See All by Yohei Munesada
G'sデータベース設計の講義
yoheimune
4
5.3k
How to create a service, How to google !
yoheimune
0
300
Machine Learning Basic and Python
yoheimune
1
520
Python Scraping and Web Apps for G's ACADEMY TOKYO
yoheimune
0
240
DevelopWorkflow and Solving Problems
yoheimune
0
450
Git and Github for Beginners
yoheimune
1
300
Data Science BOOTCAMP Practices
yoheimune
0
370
Machine Learning with Python
yoheimune
0
360
Python Basics for G's ACADEMY TOKYO
yoheimune
1
620
Other Decks in Technology
See All in Technology
Amazon Qで2Dゲームを作成してみた
siromi
0
170
AIに頼りすぎない新人育成術
cuebic9bic
3
330
Foundation Model × VisionKit で実現するローカル OCR
sansantech
PRO
1
410
モノレポにおけるエラー管理 ~Runbook自動生成とチームメンションの最適化
biwashi
0
350
Mackerel in さくらのクラウド
cubicdaiya
1
130
Google Agentspaceを実際に導入した効果と今後の展望
mixi_engineers
PRO
3
780
九州の人に知ってもらいたいGISスポット / gis spot in kyushu 2025
sakaik
0
200
GISエンジニアよ 現場に行け!
sudataka
1
140
ロールが細分化された組織でSREと協働するインフラエンジニアは何をするか? / SRE Lounge #18
kossykinto
0
240
JAWS AI/ML #30 AI コーディング IDE "Kiro" を触ってみよう
inariku
3
400
✨敗北解法コレクション✨〜Expertだった頃に足りなかった知識と技術〜
nanachi
1
770
AWSの最新サービスでAIエージェント構築に楽しく入門しよう
minorun365
PRO
8
430
Featured
See All Featured
A Modern Web Designer's Workflow
chriscoyier
695
190k
Side Projects
sachag
455
43k
Practical Tips for Bootstrapping Information Extraction Pipelines
honnibal
PRO
23
1.4k
Easily Structure & Communicate Ideas using Wireframe
afnizarnur
194
16k
Making Projects Easy
brettharned
117
6.3k
Design and Strategy: How to Deal with People Who Don’t "Get" Design
morganepeng
131
19k
GraphQLとの向き合い方2022年版
quramy
49
14k
Let's Do A Bunch of Simple Stuff to Make Websites Faster
chriscoyier
507
140k
Agile that works and the tools we love
rasmusluckow
329
21k
[RailsConf 2023 Opening Keynote] The Magic of Rails
eileencodes
30
9.6k
Balancing Empowerment & Direction
lara
2
570
RailsConf & Balkan Ruby 2019: The Past, Present, and Future of Rails at GitHub
eileencodes
139
34k
Transcript
Data Science BOOTCAMP Ϩίϝϯσʔγϣϯ࡞ Yohei Munesada
About Me 㾎फఆ༸ฏ ΉͶͩ͞Α͏͍ 㾎 ג αΠόʔΤʔδΣϯτ 㾎(`TΞΧσϛʔϝϯλʔ 㾎IUUQXXXZPIFJNOFU 㾎ͱσʔλαΠΤϯε
Time tables 19:30ʙ19:40ɹΦʔϓχϯάͱࠓͷׂ࣌ؒ 19:40ʙ19:50ɹάϧʔϓϫʔΫઆ໌ 19:50ʙ20:30ɹάϧʔϓϫʔΫʢൃද४උʣ 20:30ʙ20:40ɹٳܜ 20:40ʙ21:30ɹάϧʔϓผൃදʢ5 x 7νʔϜ +
αʣ 21:30ʙ21:40ɹ࣍ͷ՝ͷઆ໌ʢ͞Βͬͱʣ 21:40ʙ21:50ɹάϧʔϓϫʔΫʢऔΓΈ༰ͷڞ༗ͱϒϥογϡΞοϓʣ 21:50ʙ22:00ɹऔΓΈ༰ͷൃදʢ30ඵ x 7νʔϜ + αʣ
Exercises - MovieLens .PWJF-FOTΛ༻͍ͨϨίϝϯσʔγϣϯͷߏங ඞਢ՝ .PWJF-FOTͱ͍͏ެ։σʔλʹɺөըͷใɺϢʔβʔͷөըʹର͢Δใ ͳͲؚ͕·Ε·͢ɻͦΕΒσʔλΛ༻͍ͯϨίϝϯυγεςϜΛߏங͍ͯͩ͘͠͞ɻ ٻΊΔΞτϓοτ ɹɾϢʔβʔʹରͯ͠өըΛਪન͢Δ
ϙΠϯτ ɹɾਪનʹ͍ͭͯͲͷΑ͏ʹػցֶशͱͯ͠ఆٛ͢Δ͔ʁ ɹɾͳͥͦͷϞσϧΛબ͢Δͷ͔ʁ ɹɾ༧ଌ݁ՌͷධՁ݁ՌʁͲͷΑ͏ʹධՁ͢Εྑ͍͔ʁ
Exercises - MovieLens
Presentation contents ʢՄೳͰͨ͠ΒʣσϞ ͲͷΑ͏ͳػցֶशͱͯ͠ఆ͔ٛͨ͠ʁ ͲͷΑ͏ͳ࣮Λ͔ͨ͠ʁ ͲͷΑ͏ʹϞσϧΛධՁ͔ͨ͠ʁ
ͨ͠ͱ͜Ζɺۤ࿑ͨ͠ͱ͜Ζ ͦͷଞओு͍ͨ͜͠ͱΛͲ͏ͧʂ
Group work ݸਓͰͷՌΛνʔϜͰൃද͢Δ νʔϜͱͯ͠ͷൃද༰Λ࡞͢ΔʢϓϨθϯܗࣜࣗ༝ʣ άϧʔϓϫʔΫΛߦ͍·͢ ʢʙʣ ʢՄೳͰͨ͠ΒʣσϞ
ͲͷΑ͏ͳػցֶशͱͯ͠ఆ͔ٛͨ͠ʁ ͲͷΑ͏ͳ࣮Λ͔ͨ͠ʁ ͲͷΑ͏ʹϞσϧΛධՁ͔ͨ͠ʁ ͨ͠ͱ͜Ζɺۤ࿑ͨ͠ͱ͜Ζ ͦͷଞओு͍ͨ͜͠ͱΛͲ͏ͧʂ ϓϨθϯ༰
Take a break ͓ർΕ༷Ͱͨ͠ɺٳܜͰ͢ ʢʙʣ
How is your recommend system ? ൃදͷ͓࣌ؒͰ͢ʂ
How is your recommend system ? ղྫ https://goo.gl/4jGdHI
Next exercises .PWJF-FOTΛ༻͍ͨϨίϝϯσʔγϣϯͷߏங ࠃௐࠪσʔλΛ༻͍ͨσʔλαΠΤϯε ҙͷެ։σʔλΛ༻͍ͨػցֶश ػցֶशܥΫϥυ"1*Λ༻͍ͨαʔϏε։ൃ
ඞਢ՝ બ՝
Next exercises - ࠃௐࠪ ࠃௐࠪσʔλΛ༻͍ͨσʔλαΠΤϯε બ՝ ࠃௐࠪσʔλ͔ΒਓޱɺՈߏɺ৬ۀͳͲ༷ʑͳใΛಘΔ͜ͱ͕Ͱ͖·͢ɻ ԿΒ͔ͷϏδωε՝Λఆٛͨ͠ͷͪʹɺࠃௐࠪσʔλΛ༻͍ͯϏδωεͷ ҙࢥܾఆΛॿ͚ΔใΛఏ͍ࣔͯͩ͘͠͞ɻ
ٻΊΔΞτϓοτ ɹɾఆٛͨ͠Ϗδωε՝Կ͔ʁ ɹɾͦΕʹରͯ͠ࠃௐࠪσʔλΛͲͷΑ͏ʹ׆༻͔ͨ͠ʁ Ϗδωε՝ྫ ɹɾ*5ڭҭϏδωεΛల։͍ͨ͠ɻͲͷࢢொଜΛλʔήοτʹ͢Δ͖͔ʁ ɹɾϑΟϦϐϯਓʹ͚ͨΧϑΣϏδωεΛߦ͍͍ͨɻͲ͜ͰΔ͔ʁ ɹɾͳͲ
ར༻Մೳͳσʔλ ɹIUUQXXXTUBUHPKQEBUBLPLVTFJJOEFYIUN Next exercises - ࠃௐࠪ ࠃௐࠪσʔλΛ༻͍ͨσʔλαΠΤϯε બ՝
Next exercises - ࠃௐࠪ
Next exercises - ҙͷσʔλͰʂ ҙͷެ։σʔλΛ༻͍ͨػցֶश બ՝ ੈͷதʹ༷ʑͳσʔλ͕ެ։͞Ε͓ͯΓɺػցֶशʹར༻Ͱ͖Δσʔλ ଟʑଘࡏ͠·͢ɻڵຯͷ͋Δσʔλʹ͍ͭͯԾઆΛఆٛͯ͠ػցֶशΛߦ͍ɺ ԿΒ͔ͷՌΛग़͢औΓΈΛ͍ͯͩ͘͠͞ɻ
ٻΊΔΞτϓοτ ɹɾͲͷΑ͏ͳσʔλΛ͏͔ʁ ɹɾͲΜͳԾઆΛઃఆ͔ͨ͠ʁ ɹɾͲͷΑ͏ͳՌΛಋ͍ͨͷ͔ʁ·ͨͦΕΛͲͷΑ͏ʹಋ͍ͨͷ͔ʁ
ར༻Մೳͳσʔλྫ ɹ6$*.BDIJOF-FBSOJOH ɹɹIUUQBSDIJWFJDTVDJFEVNM ɹࠃཱใֶݚڀॴ ɹɹIUUQXXXOJJBDKQETDJESEBUBMJTUIUNM ɹ%"5"(0+1 ɹɹIUUQXXXEBUBHPKQ ɹ*NBHF/FU ɹɹIUUQXXXJNBHFOFUPSH Next
exercises - ҙͷσʔλͰʂ ɹ,BHHMF ɹɹIUUQTXXXLBHHMFDPNEBUBTFUT ɹ-JWFEPPSχϡʔε ɹɹIUUQOFXTMJWFEPPSDPN ɹ౦ژϝτϩΦʔϓϯσʔλ ɹɹIUUQTEFWFMPQFSUPLZPNFUSPBQQKQJOGP ɹ5XJUUFS"1*ɺͳͲ ҙͷެ։σʔλΛ༻͍ͨػցֶश બ՝
Next exercises - ҙͷσʔλͰʂ
Next exercises - ػցֶशAPIΛͬͯʂ ػցֶशܥΫϥυ"1*Λ༻͍ͨαʔϏε։ൃ બ՝ (PPHMF"84"[VSF#JOH*#.ͷ֤αʔϏεͰػցֶशܥͷ"1*͕ ఏڙ͞Ε͍ͯΔʢྫɿإೝࣝɺԻೝࣝɺςΩετUPεϐʔνɺFUDʣɻ ͜ΕΒͷ"1*Λ͍ɺԿΒཱ͔ͪͦ͏ͳΞϓϦαʔϏεΛ੍࡞͍ͯͩ͘͠͞ɻ
ٻΊΔΞτϓοτ ɹɾͲͷ"1*Λར༻͢Δͷ͔ʁ ɹɾԿʹཱͯΔͷ͔ʁͲͷΑ͏ͳαʔϏε͔ʁ ग़ҙਤ ɹɾֶशࡁΈͷϞσϧΛͲͷΑ͏ʹ࣮ੈքͰ׆͔͢ͷ͔ɺͦΕΛߟ͑ߦಈ͢Δɻ
Next exercises - ػցֶशAPIΛͬͯʂ
Next exercises .PWJF-FOTΛ༻͍ͨϨίϝϯσʔγϣϯͷߏங ࠃௐࠪσʔλΛ༻͍ͨσʔλαΠΤϯε ҙͷެ։σʔλΛ༻͍ͨػցֶश ػցֶशܥΫϥυ"1*Λ༻͍ͨαʔϏε։ൃ
ඞਢ՝ બ՝
Group work ݸਓͦΕͧΕͰऔΓΜͰ͍Δ༰ʢऔΓΉ༰ʣΛڞ༗ ൃද༰·ͱΊʢϓϨθϯܗࣜޱ಄Ͱʣ άϧʔϓϫʔΫΛߦ͍·͢ ʢʙʣ
Group work ൃදʢͲͷΑ͏ͳ༰Λѻ͏͔ʣ άϧʔϓϫʔΫΛߦ͍·͢ ʢʙʣ
Thank you ͦΕͰྑ͍σʔλαΠΤϯεΛʂ