Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Data Science BOOTCAMP Practices - Recommendation
Search
Yohei Munesada
May 09, 2017
Technology
0
200
Data Science BOOTCAMP Practices - Recommendation
レコメンデーションの制作演習のスライドです。中に解答例のリンクも掲載しています。
G's Academy Data Science Bootcamp
Yohei Munesada
May 09, 2017
Tweet
Share
More Decks by Yohei Munesada
See All by Yohei Munesada
G'sデータベース設計の講義
yoheimune
4
5.2k
How to create a service, How to google !
yoheimune
0
290
Machine Learning Basic and Python
yoheimune
1
500
Python Scraping and Web Apps for G's ACADEMY TOKYO
yoheimune
0
230
DevelopWorkflow and Solving Problems
yoheimune
0
440
Git and Github for Beginners
yoheimune
1
280
Data Science BOOTCAMP Practices
yoheimune
0
360
Machine Learning with Python
yoheimune
0
330
Python Basics for G's ACADEMY TOKYO
yoheimune
1
590
Other Decks in Technology
See All in Technology
ワールドカフェI /チューターを改良する / World Café I and Improving the Tutors
ks91
PRO
0
130
意思決定を支える検索体験を目指してやってきたこと
hinatades
PRO
0
230
生成AIのユースケースをとにかく集めてまるっと学ぶ!/ all about generative ai usecases
gakumura
2
170
Cross Data Platforms Meetup LT 20250422
tarotaro0129
1
720
PagerDuty×ポストモーテムで築く障害対応文化/Building a culture of incident response with PagerDuty and postmortems
aeonpeople
2
360
QA/SDETの現在と、これからの挑戦
imtnd
0
140
PostgreSQL Log File Mastery: Optimizing Database Performance Through Advanced Log Analysis
shiviyer007
PRO
0
120
Automatically generating types by running tests
sinsoku
2
3.5k
【Λ(らむだ)】最近のアプデ情報 / RPALT20250422
lambda
0
110
DETR手法の変遷と最新動向(CVPR2025)
tenten0727
2
1.4k
ガバクラのAWS長期継続割引 ~次の4/1に慌てないために~
hamijay_cloud
1
300
AIコーディングの最前線 〜活用のコツと課題〜
pharma_x_tech
4
2.2k
Featured
See All Featured
Performance Is Good for Brains [We Love Speed 2024]
tammyeverts
9
760
Building Flexible Design Systems
yeseniaperezcruz
329
38k
The Illustrated Children's Guide to Kubernetes
chrisshort
48
49k
Optimising Largest Contentful Paint
csswizardry
36
3.2k
Product Roadmaps are Hard
iamctodd
PRO
52
11k
Measuring & Analyzing Core Web Vitals
bluesmoon
7
390
[Rails World 2023 - Day 1 Closing Keynote] - The Magic of Rails
eileencodes
34
2.2k
Building Applications with DynamoDB
mza
94
6.3k
A better future with KSS
kneath
239
17k
10 Git Anti Patterns You Should be Aware of
lemiorhan
PRO
656
60k
実際に使うSQLの書き方 徹底解説 / pgcon21j-tutorial
soudai
178
53k
The Art of Delivering Value - GDevCon NA Keynote
reverentgeek
13
1.4k
Transcript
Data Science BOOTCAMP Ϩίϝϯσʔγϣϯ࡞ Yohei Munesada
About Me 㾎फఆ༸ฏ ΉͶͩ͞Α͏͍ 㾎 ג αΠόʔΤʔδΣϯτ 㾎(`TΞΧσϛʔϝϯλʔ 㾎IUUQXXXZPIFJNOFU 㾎ͱσʔλαΠΤϯε
Time tables 19:30ʙ19:40ɹΦʔϓχϯάͱࠓͷׂ࣌ؒ 19:40ʙ19:50ɹάϧʔϓϫʔΫઆ໌ 19:50ʙ20:30ɹάϧʔϓϫʔΫʢൃද४උʣ 20:30ʙ20:40ɹٳܜ 20:40ʙ21:30ɹάϧʔϓผൃදʢ5 x 7νʔϜ +
αʣ 21:30ʙ21:40ɹ࣍ͷ՝ͷઆ໌ʢ͞Βͬͱʣ 21:40ʙ21:50ɹάϧʔϓϫʔΫʢऔΓΈ༰ͷڞ༗ͱϒϥογϡΞοϓʣ 21:50ʙ22:00ɹऔΓΈ༰ͷൃදʢ30ඵ x 7νʔϜ + αʣ
Exercises - MovieLens .PWJF-FOTΛ༻͍ͨϨίϝϯσʔγϣϯͷߏங ඞਢ՝ .PWJF-FOTͱ͍͏ެ։σʔλʹɺөըͷใɺϢʔβʔͷөըʹର͢Δใ ͳͲؚ͕·Ε·͢ɻͦΕΒσʔλΛ༻͍ͯϨίϝϯυγεςϜΛߏங͍ͯͩ͘͠͞ɻ ٻΊΔΞτϓοτ ɹɾϢʔβʔʹରͯ͠өըΛਪન͢Δ
ϙΠϯτ ɹɾਪનʹ͍ͭͯͲͷΑ͏ʹػցֶशͱͯ͠ఆٛ͢Δ͔ʁ ɹɾͳͥͦͷϞσϧΛબ͢Δͷ͔ʁ ɹɾ༧ଌ݁ՌͷධՁ݁ՌʁͲͷΑ͏ʹධՁ͢Εྑ͍͔ʁ
Exercises - MovieLens
Presentation contents ʢՄೳͰͨ͠ΒʣσϞ ͲͷΑ͏ͳػցֶशͱͯ͠ఆ͔ٛͨ͠ʁ ͲͷΑ͏ͳ࣮Λ͔ͨ͠ʁ ͲͷΑ͏ʹϞσϧΛධՁ͔ͨ͠ʁ
ͨ͠ͱ͜Ζɺۤ࿑ͨ͠ͱ͜Ζ ͦͷଞओு͍ͨ͜͠ͱΛͲ͏ͧʂ
Group work ݸਓͰͷՌΛνʔϜͰൃද͢Δ νʔϜͱͯ͠ͷൃද༰Λ࡞͢ΔʢϓϨθϯܗࣜࣗ༝ʣ άϧʔϓϫʔΫΛߦ͍·͢ ʢʙʣ ʢՄೳͰͨ͠ΒʣσϞ
ͲͷΑ͏ͳػցֶशͱͯ͠ఆ͔ٛͨ͠ʁ ͲͷΑ͏ͳ࣮Λ͔ͨ͠ʁ ͲͷΑ͏ʹϞσϧΛධՁ͔ͨ͠ʁ ͨ͠ͱ͜Ζɺۤ࿑ͨ͠ͱ͜Ζ ͦͷଞओு͍ͨ͜͠ͱΛͲ͏ͧʂ ϓϨθϯ༰
Take a break ͓ർΕ༷Ͱͨ͠ɺٳܜͰ͢ ʢʙʣ
How is your recommend system ? ൃදͷ͓࣌ؒͰ͢ʂ
How is your recommend system ? ղྫ https://goo.gl/4jGdHI
Next exercises .PWJF-FOTΛ༻͍ͨϨίϝϯσʔγϣϯͷߏங ࠃௐࠪσʔλΛ༻͍ͨσʔλαΠΤϯε ҙͷެ։σʔλΛ༻͍ͨػցֶश ػցֶशܥΫϥυ"1*Λ༻͍ͨαʔϏε։ൃ
ඞਢ՝ બ՝
Next exercises - ࠃௐࠪ ࠃௐࠪσʔλΛ༻͍ͨσʔλαΠΤϯε બ՝ ࠃௐࠪσʔλ͔ΒਓޱɺՈߏɺ৬ۀͳͲ༷ʑͳใΛಘΔ͜ͱ͕Ͱ͖·͢ɻ ԿΒ͔ͷϏδωε՝Λఆٛͨ͠ͷͪʹɺࠃௐࠪσʔλΛ༻͍ͯϏδωεͷ ҙࢥܾఆΛॿ͚ΔใΛఏ͍ࣔͯͩ͘͠͞ɻ
ٻΊΔΞτϓοτ ɹɾఆٛͨ͠Ϗδωε՝Կ͔ʁ ɹɾͦΕʹରͯ͠ࠃௐࠪσʔλΛͲͷΑ͏ʹ׆༻͔ͨ͠ʁ Ϗδωε՝ྫ ɹɾ*5ڭҭϏδωεΛల։͍ͨ͠ɻͲͷࢢொଜΛλʔήοτʹ͢Δ͖͔ʁ ɹɾϑΟϦϐϯਓʹ͚ͨΧϑΣϏδωεΛߦ͍͍ͨɻͲ͜ͰΔ͔ʁ ɹɾͳͲ
ར༻Մೳͳσʔλ ɹIUUQXXXTUBUHPKQEBUBLPLVTFJJOEFYIUN Next exercises - ࠃௐࠪ ࠃௐࠪσʔλΛ༻͍ͨσʔλαΠΤϯε બ՝
Next exercises - ࠃௐࠪ
Next exercises - ҙͷσʔλͰʂ ҙͷެ։σʔλΛ༻͍ͨػցֶश બ՝ ੈͷதʹ༷ʑͳσʔλ͕ެ։͞Ε͓ͯΓɺػցֶशʹར༻Ͱ͖Δσʔλ ଟʑଘࡏ͠·͢ɻڵຯͷ͋Δσʔλʹ͍ͭͯԾઆΛఆٛͯ͠ػցֶशΛߦ͍ɺ ԿΒ͔ͷՌΛग़͢औΓΈΛ͍ͯͩ͘͠͞ɻ
ٻΊΔΞτϓοτ ɹɾͲͷΑ͏ͳσʔλΛ͏͔ʁ ɹɾͲΜͳԾઆΛઃఆ͔ͨ͠ʁ ɹɾͲͷΑ͏ͳՌΛಋ͍ͨͷ͔ʁ·ͨͦΕΛͲͷΑ͏ʹಋ͍ͨͷ͔ʁ
ར༻Մೳͳσʔλྫ ɹ6$*.BDIJOF-FBSOJOH ɹɹIUUQBSDIJWFJDTVDJFEVNM ɹࠃཱใֶݚڀॴ ɹɹIUUQXXXOJJBDKQETDJESEBUBMJTUIUNM ɹ%"5"(0+1 ɹɹIUUQXXXEBUBHPKQ ɹ*NBHF/FU ɹɹIUUQXXXJNBHFOFUPSH Next
exercises - ҙͷσʔλͰʂ ɹ,BHHMF ɹɹIUUQTXXXLBHHMFDPNEBUBTFUT ɹ-JWFEPPSχϡʔε ɹɹIUUQOFXTMJWFEPPSDPN ɹ౦ژϝτϩΦʔϓϯσʔλ ɹɹIUUQTEFWFMPQFSUPLZPNFUSPBQQKQJOGP ɹ5XJUUFS"1*ɺͳͲ ҙͷެ։σʔλΛ༻͍ͨػցֶश બ՝
Next exercises - ҙͷσʔλͰʂ
Next exercises - ػցֶशAPIΛͬͯʂ ػցֶशܥΫϥυ"1*Λ༻͍ͨαʔϏε։ൃ બ՝ (PPHMF"84"[VSF#JOH*#.ͷ֤αʔϏεͰػցֶशܥͷ"1*͕ ఏڙ͞Ε͍ͯΔʢྫɿإೝࣝɺԻೝࣝɺςΩετUPεϐʔνɺFUDʣɻ ͜ΕΒͷ"1*Λ͍ɺԿΒཱ͔ͪͦ͏ͳΞϓϦαʔϏεΛ੍࡞͍ͯͩ͘͠͞ɻ
ٻΊΔΞτϓοτ ɹɾͲͷ"1*Λར༻͢Δͷ͔ʁ ɹɾԿʹཱͯΔͷ͔ʁͲͷΑ͏ͳαʔϏε͔ʁ ग़ҙਤ ɹɾֶशࡁΈͷϞσϧΛͲͷΑ͏ʹ࣮ੈքͰ׆͔͢ͷ͔ɺͦΕΛߟ͑ߦಈ͢Δɻ
Next exercises - ػցֶशAPIΛͬͯʂ
Next exercises .PWJF-FOTΛ༻͍ͨϨίϝϯσʔγϣϯͷߏங ࠃௐࠪσʔλΛ༻͍ͨσʔλαΠΤϯε ҙͷެ։σʔλΛ༻͍ͨػցֶश ػցֶशܥΫϥυ"1*Λ༻͍ͨαʔϏε։ൃ
ඞਢ՝ બ՝
Group work ݸਓͦΕͧΕͰऔΓΜͰ͍Δ༰ʢऔΓΉ༰ʣΛڞ༗ ൃද༰·ͱΊʢϓϨθϯܗࣜޱ಄Ͱʣ άϧʔϓϫʔΫΛߦ͍·͢ ʢʙʣ
Group work ൃදʢͲͷΑ͏ͳ༰Λѻ͏͔ʣ άϧʔϓϫʔΫΛߦ͍·͢ ʢʙʣ
Thank you ͦΕͰྑ͍σʔλαΠΤϯεΛʂ