Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Data Science BOOTCAMP Practices - Recommendation
Search
Yohei Munesada
May 09, 2017
Technology
0
200
Data Science BOOTCAMP Practices - Recommendation
レコメンデーションの制作演習のスライドです。中に解答例のリンクも掲載しています。
G's Academy Data Science Bootcamp
Yohei Munesada
May 09, 2017
Tweet
Share
More Decks by Yohei Munesada
See All by Yohei Munesada
G'sデータベース設計の講義
yoheimune
4
5.2k
How to create a service, How to google !
yoheimune
0
290
Machine Learning Basic and Python
yoheimune
1
500
Python Scraping and Web Apps for G's ACADEMY TOKYO
yoheimune
0
230
DevelopWorkflow and Solving Problems
yoheimune
0
440
Git and Github for Beginners
yoheimune
1
280
Data Science BOOTCAMP Practices
yoheimune
0
360
Machine Learning with Python
yoheimune
0
330
Python Basics for G's ACADEMY TOKYO
yoheimune
1
590
Other Decks in Technology
See All in Technology
MySQL Indexes and Histograms – How they really speed up your queries
lefred
0
130
MCPを理解する
yudai00
12
7.9k
更新系と状態
uhyo
8
2.1k
2025-04-14 Data & Analytics 井戸端会議 Multi tenant log platform with Iceberg
kamijin_fanta
0
140
日経電子版 for Android の技術的課題と取り組み(令和最新版)/android-20250423
nikkei_engineer_recruiting
1
590
Winning at PHP in Production in 2025
beberlei
1
250
SREからゼロイチプロダクト開発へ ー越境する打席の立ち方と期待への応え方ー / Product Engineering Night #8
itkq
2
1.1k
今日からはじめるプラットフォームエンジニアリング
jacopen
8
1.8k
AI 코딩 에이전트 더 똑똑하게 쓰기
nacyot
0
410
GraphQLを活用したリアーキテクチャに対応するSLI/Oの再設計
coconala_engineer
0
160
Conquering PDFs: document understanding beyond plain text
inesmontani
PRO
2
420
Computer Use〜OpenAIとAnthropicの比較と将来の展望〜
pharma_x_tech
6
810
Featured
See All Featured
Chrome DevTools: State of the Union 2024 - Debugging React & Beyond
addyosmani
5
580
Become a Pro
speakerdeck
PRO
28
5.3k
The Art of Delivering Value - GDevCon NA Keynote
reverentgeek
14
1.4k
Bash Introduction
62gerente
611
210k
StorybookのUI Testing Handbookを読んだ
zakiyama
29
5.7k
Making Projects Easy
brettharned
116
6.1k
Automating Front-end Workflow
addyosmani
1370
200k
Unsuck your backbone
ammeep
670
57k
How to Think Like a Performance Engineer
csswizardry
23
1.5k
Code Reviewing Like a Champion
maltzj
523
40k
Java REST API Framework Comparison - PWX 2021
mraible
31
8.5k
"I'm Feeling Lucky" - Building Great Search Experiences for Today's Users (#IAC19)
danielanewman
227
22k
Transcript
Data Science BOOTCAMP Ϩίϝϯσʔγϣϯ࡞ Yohei Munesada
About Me 㾎फఆ༸ฏ ΉͶͩ͞Α͏͍ 㾎 ג αΠόʔΤʔδΣϯτ 㾎(`TΞΧσϛʔϝϯλʔ 㾎IUUQXXXZPIFJNOFU 㾎ͱσʔλαΠΤϯε
Time tables 19:30ʙ19:40ɹΦʔϓχϯάͱࠓͷׂ࣌ؒ 19:40ʙ19:50ɹάϧʔϓϫʔΫઆ໌ 19:50ʙ20:30ɹάϧʔϓϫʔΫʢൃද४උʣ 20:30ʙ20:40ɹٳܜ 20:40ʙ21:30ɹάϧʔϓผൃදʢ5 x 7νʔϜ +
αʣ 21:30ʙ21:40ɹ࣍ͷ՝ͷઆ໌ʢ͞Βͬͱʣ 21:40ʙ21:50ɹάϧʔϓϫʔΫʢऔΓΈ༰ͷڞ༗ͱϒϥογϡΞοϓʣ 21:50ʙ22:00ɹऔΓΈ༰ͷൃදʢ30ඵ x 7νʔϜ + αʣ
Exercises - MovieLens .PWJF-FOTΛ༻͍ͨϨίϝϯσʔγϣϯͷߏங ඞਢ՝ .PWJF-FOTͱ͍͏ެ։σʔλʹɺөըͷใɺϢʔβʔͷөըʹର͢Δใ ͳͲؚ͕·Ε·͢ɻͦΕΒσʔλΛ༻͍ͯϨίϝϯυγεςϜΛߏங͍ͯͩ͘͠͞ɻ ٻΊΔΞτϓοτ ɹɾϢʔβʔʹରͯ͠өըΛਪન͢Δ
ϙΠϯτ ɹɾਪનʹ͍ͭͯͲͷΑ͏ʹػցֶशͱͯ͠ఆٛ͢Δ͔ʁ ɹɾͳͥͦͷϞσϧΛબ͢Δͷ͔ʁ ɹɾ༧ଌ݁ՌͷධՁ݁ՌʁͲͷΑ͏ʹධՁ͢Εྑ͍͔ʁ
Exercises - MovieLens
Presentation contents ʢՄೳͰͨ͠ΒʣσϞ ͲͷΑ͏ͳػցֶशͱͯ͠ఆ͔ٛͨ͠ʁ ͲͷΑ͏ͳ࣮Λ͔ͨ͠ʁ ͲͷΑ͏ʹϞσϧΛධՁ͔ͨ͠ʁ
ͨ͠ͱ͜Ζɺۤ࿑ͨ͠ͱ͜Ζ ͦͷଞओு͍ͨ͜͠ͱΛͲ͏ͧʂ
Group work ݸਓͰͷՌΛνʔϜͰൃද͢Δ νʔϜͱͯ͠ͷൃද༰Λ࡞͢ΔʢϓϨθϯܗࣜࣗ༝ʣ άϧʔϓϫʔΫΛߦ͍·͢ ʢʙʣ ʢՄೳͰͨ͠ΒʣσϞ
ͲͷΑ͏ͳػցֶशͱͯ͠ఆ͔ٛͨ͠ʁ ͲͷΑ͏ͳ࣮Λ͔ͨ͠ʁ ͲͷΑ͏ʹϞσϧΛධՁ͔ͨ͠ʁ ͨ͠ͱ͜Ζɺۤ࿑ͨ͠ͱ͜Ζ ͦͷଞओு͍ͨ͜͠ͱΛͲ͏ͧʂ ϓϨθϯ༰
Take a break ͓ർΕ༷Ͱͨ͠ɺٳܜͰ͢ ʢʙʣ
How is your recommend system ? ൃදͷ͓࣌ؒͰ͢ʂ
How is your recommend system ? ղྫ https://goo.gl/4jGdHI
Next exercises .PWJF-FOTΛ༻͍ͨϨίϝϯσʔγϣϯͷߏங ࠃௐࠪσʔλΛ༻͍ͨσʔλαΠΤϯε ҙͷެ։σʔλΛ༻͍ͨػցֶश ػցֶशܥΫϥυ"1*Λ༻͍ͨαʔϏε։ൃ
ඞਢ՝ બ՝
Next exercises - ࠃௐࠪ ࠃௐࠪσʔλΛ༻͍ͨσʔλαΠΤϯε બ՝ ࠃௐࠪσʔλ͔ΒਓޱɺՈߏɺ৬ۀͳͲ༷ʑͳใΛಘΔ͜ͱ͕Ͱ͖·͢ɻ ԿΒ͔ͷϏδωε՝Λఆٛͨ͠ͷͪʹɺࠃௐࠪσʔλΛ༻͍ͯϏδωεͷ ҙࢥܾఆΛॿ͚ΔใΛఏ͍ࣔͯͩ͘͠͞ɻ
ٻΊΔΞτϓοτ ɹɾఆٛͨ͠Ϗδωε՝Կ͔ʁ ɹɾͦΕʹରͯ͠ࠃௐࠪσʔλΛͲͷΑ͏ʹ׆༻͔ͨ͠ʁ Ϗδωε՝ྫ ɹɾ*5ڭҭϏδωεΛల։͍ͨ͠ɻͲͷࢢொଜΛλʔήοτʹ͢Δ͖͔ʁ ɹɾϑΟϦϐϯਓʹ͚ͨΧϑΣϏδωεΛߦ͍͍ͨɻͲ͜ͰΔ͔ʁ ɹɾͳͲ
ར༻Մೳͳσʔλ ɹIUUQXXXTUBUHPKQEBUBLPLVTFJJOEFYIUN Next exercises - ࠃௐࠪ ࠃௐࠪσʔλΛ༻͍ͨσʔλαΠΤϯε બ՝
Next exercises - ࠃௐࠪ
Next exercises - ҙͷσʔλͰʂ ҙͷެ։σʔλΛ༻͍ͨػցֶश બ՝ ੈͷதʹ༷ʑͳσʔλ͕ެ։͞Ε͓ͯΓɺػցֶशʹར༻Ͱ͖Δσʔλ ଟʑଘࡏ͠·͢ɻڵຯͷ͋Δσʔλʹ͍ͭͯԾઆΛఆٛͯ͠ػցֶशΛߦ͍ɺ ԿΒ͔ͷՌΛग़͢औΓΈΛ͍ͯͩ͘͠͞ɻ
ٻΊΔΞτϓοτ ɹɾͲͷΑ͏ͳσʔλΛ͏͔ʁ ɹɾͲΜͳԾઆΛઃఆ͔ͨ͠ʁ ɹɾͲͷΑ͏ͳՌΛಋ͍ͨͷ͔ʁ·ͨͦΕΛͲͷΑ͏ʹಋ͍ͨͷ͔ʁ
ར༻Մೳͳσʔλྫ ɹ6$*.BDIJOF-FBSOJOH ɹɹIUUQBSDIJWFJDTVDJFEVNM ɹࠃཱใֶݚڀॴ ɹɹIUUQXXXOJJBDKQETDJESEBUBMJTUIUNM ɹ%"5"(0+1 ɹɹIUUQXXXEBUBHPKQ ɹ*NBHF/FU ɹɹIUUQXXXJNBHFOFUPSH Next
exercises - ҙͷσʔλͰʂ ɹ,BHHMF ɹɹIUUQTXXXLBHHMFDPNEBUBTFUT ɹ-JWFEPPSχϡʔε ɹɹIUUQOFXTMJWFEPPSDPN ɹ౦ژϝτϩΦʔϓϯσʔλ ɹɹIUUQTEFWFMPQFSUPLZPNFUSPBQQKQJOGP ɹ5XJUUFS"1*ɺͳͲ ҙͷެ։σʔλΛ༻͍ͨػցֶश બ՝
Next exercises - ҙͷσʔλͰʂ
Next exercises - ػցֶशAPIΛͬͯʂ ػցֶशܥΫϥυ"1*Λ༻͍ͨαʔϏε։ൃ બ՝ (PPHMF"84"[VSF#JOH*#.ͷ֤αʔϏεͰػցֶशܥͷ"1*͕ ఏڙ͞Ε͍ͯΔʢྫɿإೝࣝɺԻೝࣝɺςΩετUPεϐʔνɺFUDʣɻ ͜ΕΒͷ"1*Λ͍ɺԿΒཱ͔ͪͦ͏ͳΞϓϦαʔϏεΛ੍࡞͍ͯͩ͘͠͞ɻ
ٻΊΔΞτϓοτ ɹɾͲͷ"1*Λར༻͢Δͷ͔ʁ ɹɾԿʹཱͯΔͷ͔ʁͲͷΑ͏ͳαʔϏε͔ʁ ग़ҙਤ ɹɾֶशࡁΈͷϞσϧΛͲͷΑ͏ʹ࣮ੈքͰ׆͔͢ͷ͔ɺͦΕΛߟ͑ߦಈ͢Δɻ
Next exercises - ػցֶशAPIΛͬͯʂ
Next exercises .PWJF-FOTΛ༻͍ͨϨίϝϯσʔγϣϯͷߏங ࠃௐࠪσʔλΛ༻͍ͨσʔλαΠΤϯε ҙͷެ։σʔλΛ༻͍ͨػցֶश ػցֶशܥΫϥυ"1*Λ༻͍ͨαʔϏε։ൃ
ඞਢ՝ બ՝
Group work ݸਓͦΕͧΕͰऔΓΜͰ͍Δ༰ʢऔΓΉ༰ʣΛڞ༗ ൃද༰·ͱΊʢϓϨθϯܗࣜޱ಄Ͱʣ άϧʔϓϫʔΫΛߦ͍·͢ ʢʙʣ
Group work ൃදʢͲͷΑ͏ͳ༰Λѻ͏͔ʣ άϧʔϓϫʔΫΛߦ͍·͢ ʢʙʣ
Thank you ͦΕͰྑ͍σʔλαΠΤϯεΛʂ