Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Data Science BOOTCAMP Practices - Recommendation
Search
Yohei Munesada
May 09, 2017
Technology
0
220
Data Science BOOTCAMP Practices - Recommendation
レコメンデーションの制作演習のスライドです。中に解答例のリンクも掲載しています。
G's Academy Data Science Bootcamp
Yohei Munesada
May 09, 2017
Tweet
Share
More Decks by Yohei Munesada
See All by Yohei Munesada
G'sデータベース設計の講義
yoheimune
4
5.3k
How to create a service, How to google !
yoheimune
0
310
Machine Learning Basic and Python
yoheimune
1
530
Python Scraping and Web Apps for G's ACADEMY TOKYO
yoheimune
0
250
DevelopWorkflow and Solving Problems
yoheimune
0
460
Git and Github for Beginners
yoheimune
1
310
Data Science BOOTCAMP Practices
yoheimune
0
380
Machine Learning with Python
yoheimune
0
360
Python Basics for G's ACADEMY TOKYO
yoheimune
1
630
Other Decks in Technology
See All in Technology
学術的根拠から読み解くNotebookLMの音声活用法
shukob
0
130
改竄して学ぶコンテナサプライチェーンセキュリティ ~コンテナイメージの完全性を目指して~/tampering-container-supplychain-security
mochizuki875
1
360
グローバルなコンパウンド戦略を支えるモジュラーモノリスとドメイン駆動設計
kawauso
3
5.6k
雲勉LT_Amazon Bedrock AgentCoreを知りAIエージェントに入門しよう!
ymae
2
170
生成AI時代に若手エンジニアが最初に覚えるべき内容と、その学習法
starfish719
2
560
その意思決定、まだ続けるんですか? ~痛みを超えて未来を作る、AI時代の撤退とピボットの技術~
applism118
22
13k
事業状況で変化する最適解。進化し続ける開発組織とアーキテクチャ
caddi_eng
1
4.1k
仕様は“書く”より“語る” - 分断を超えたチーム開発の実践 / 20251115 Naoki Takahashi
shift_evolve
PRO
1
1.1k
プロダクト負債と歩む持続可能なサービスを育てるための挑戦
sansantech
PRO
1
610
ある編集者のこれまでとこれから —— 開発者コミュニティと歩んだ四半世紀
inao
5
3.5k
ABEJA FIRST GUIDE for Software Engineers
abeja
0
3.2k
はじめての OSS コントリビューション 〜小さな PR が世界を変える〜
chiroito
4
350
Featured
See All Featured
Fantastic passwords and where to find them - at NoRuKo
philnash
52
3.5k
Embracing the Ebb and Flow
colly
88
4.9k
Performance Is Good for Brains [We Love Speed 2024]
tammyeverts
12
1.3k
Bootstrapping a Software Product
garrettdimon
PRO
307
110k
Docker and Python
trallard
46
3.7k
[RailsConf 2023 Opening Keynote] The Magic of Rails
eileencodes
31
9.8k
Distributed Sagas: A Protocol for Coordinating Microservices
caitiem20
333
22k
Connecting the Dots Between Site Speed, User Experience & Your Business [WebExpo 2025]
tammyeverts
10
680
Writing Fast Ruby
sferik
630
62k
Easily Structure & Communicate Ideas using Wireframe
afnizarnur
194
17k
Agile that works and the tools we love
rasmusluckow
331
21k
Unsuck your backbone
ammeep
671
58k
Transcript
Data Science BOOTCAMP Ϩίϝϯσʔγϣϯ࡞ Yohei Munesada
About Me 㾎फఆ༸ฏ ΉͶͩ͞Α͏͍ 㾎 ג αΠόʔΤʔδΣϯτ 㾎(`TΞΧσϛʔϝϯλʔ 㾎IUUQXXXZPIFJNOFU 㾎ͱσʔλαΠΤϯε
Time tables 19:30ʙ19:40ɹΦʔϓχϯάͱࠓͷׂ࣌ؒ 19:40ʙ19:50ɹάϧʔϓϫʔΫઆ໌ 19:50ʙ20:30ɹάϧʔϓϫʔΫʢൃද४උʣ 20:30ʙ20:40ɹٳܜ 20:40ʙ21:30ɹάϧʔϓผൃදʢ5 x 7νʔϜ +
αʣ 21:30ʙ21:40ɹ࣍ͷ՝ͷઆ໌ʢ͞Βͬͱʣ 21:40ʙ21:50ɹάϧʔϓϫʔΫʢऔΓΈ༰ͷڞ༗ͱϒϥογϡΞοϓʣ 21:50ʙ22:00ɹऔΓΈ༰ͷൃදʢ30ඵ x 7νʔϜ + αʣ
Exercises - MovieLens .PWJF-FOTΛ༻͍ͨϨίϝϯσʔγϣϯͷߏங ඞਢ՝ .PWJF-FOTͱ͍͏ެ։σʔλʹɺөըͷใɺϢʔβʔͷөըʹର͢Δใ ͳͲؚ͕·Ε·͢ɻͦΕΒσʔλΛ༻͍ͯϨίϝϯυγεςϜΛߏங͍ͯͩ͘͠͞ɻ ٻΊΔΞτϓοτ ɹɾϢʔβʔʹରͯ͠өըΛਪન͢Δ
ϙΠϯτ ɹɾਪનʹ͍ͭͯͲͷΑ͏ʹػցֶशͱͯ͠ఆٛ͢Δ͔ʁ ɹɾͳͥͦͷϞσϧΛબ͢Δͷ͔ʁ ɹɾ༧ଌ݁ՌͷධՁ݁ՌʁͲͷΑ͏ʹධՁ͢Εྑ͍͔ʁ
Exercises - MovieLens
Presentation contents ʢՄೳͰͨ͠ΒʣσϞ ͲͷΑ͏ͳػցֶशͱͯ͠ఆ͔ٛͨ͠ʁ ͲͷΑ͏ͳ࣮Λ͔ͨ͠ʁ ͲͷΑ͏ʹϞσϧΛධՁ͔ͨ͠ʁ
ͨ͠ͱ͜Ζɺۤ࿑ͨ͠ͱ͜Ζ ͦͷଞओு͍ͨ͜͠ͱΛͲ͏ͧʂ
Group work ݸਓͰͷՌΛνʔϜͰൃද͢Δ νʔϜͱͯ͠ͷൃද༰Λ࡞͢ΔʢϓϨθϯܗࣜࣗ༝ʣ άϧʔϓϫʔΫΛߦ͍·͢ ʢʙʣ ʢՄೳͰͨ͠ΒʣσϞ
ͲͷΑ͏ͳػցֶशͱͯ͠ఆ͔ٛͨ͠ʁ ͲͷΑ͏ͳ࣮Λ͔ͨ͠ʁ ͲͷΑ͏ʹϞσϧΛධՁ͔ͨ͠ʁ ͨ͠ͱ͜Ζɺۤ࿑ͨ͠ͱ͜Ζ ͦͷଞओு͍ͨ͜͠ͱΛͲ͏ͧʂ ϓϨθϯ༰
Take a break ͓ർΕ༷Ͱͨ͠ɺٳܜͰ͢ ʢʙʣ
How is your recommend system ? ൃදͷ͓࣌ؒͰ͢ʂ
How is your recommend system ? ղྫ https://goo.gl/4jGdHI
Next exercises .PWJF-FOTΛ༻͍ͨϨίϝϯσʔγϣϯͷߏங ࠃௐࠪσʔλΛ༻͍ͨσʔλαΠΤϯε ҙͷެ։σʔλΛ༻͍ͨػցֶश ػցֶशܥΫϥυ"1*Λ༻͍ͨαʔϏε։ൃ
ඞਢ՝ બ՝
Next exercises - ࠃௐࠪ ࠃௐࠪσʔλΛ༻͍ͨσʔλαΠΤϯε બ՝ ࠃௐࠪσʔλ͔ΒਓޱɺՈߏɺ৬ۀͳͲ༷ʑͳใΛಘΔ͜ͱ͕Ͱ͖·͢ɻ ԿΒ͔ͷϏδωε՝Λఆٛͨ͠ͷͪʹɺࠃௐࠪσʔλΛ༻͍ͯϏδωεͷ ҙࢥܾఆΛॿ͚ΔใΛఏ͍ࣔͯͩ͘͠͞ɻ
ٻΊΔΞτϓοτ ɹɾఆٛͨ͠Ϗδωε՝Կ͔ʁ ɹɾͦΕʹରͯ͠ࠃௐࠪσʔλΛͲͷΑ͏ʹ׆༻͔ͨ͠ʁ Ϗδωε՝ྫ ɹɾ*5ڭҭϏδωεΛల։͍ͨ͠ɻͲͷࢢொଜΛλʔήοτʹ͢Δ͖͔ʁ ɹɾϑΟϦϐϯਓʹ͚ͨΧϑΣϏδωεΛߦ͍͍ͨɻͲ͜ͰΔ͔ʁ ɹɾͳͲ
ར༻Մೳͳσʔλ ɹIUUQXXXTUBUHPKQEBUBLPLVTFJJOEFYIUN Next exercises - ࠃௐࠪ ࠃௐࠪσʔλΛ༻͍ͨσʔλαΠΤϯε બ՝
Next exercises - ࠃௐࠪ
Next exercises - ҙͷσʔλͰʂ ҙͷެ։σʔλΛ༻͍ͨػցֶश બ՝ ੈͷதʹ༷ʑͳσʔλ͕ެ։͞Ε͓ͯΓɺػցֶशʹར༻Ͱ͖Δσʔλ ଟʑଘࡏ͠·͢ɻڵຯͷ͋Δσʔλʹ͍ͭͯԾઆΛఆٛͯ͠ػցֶशΛߦ͍ɺ ԿΒ͔ͷՌΛग़͢औΓΈΛ͍ͯͩ͘͠͞ɻ
ٻΊΔΞτϓοτ ɹɾͲͷΑ͏ͳσʔλΛ͏͔ʁ ɹɾͲΜͳԾઆΛઃఆ͔ͨ͠ʁ ɹɾͲͷΑ͏ͳՌΛಋ͍ͨͷ͔ʁ·ͨͦΕΛͲͷΑ͏ʹಋ͍ͨͷ͔ʁ
ར༻Մೳͳσʔλྫ ɹ6$*.BDIJOF-FBSOJOH ɹɹIUUQBSDIJWFJDTVDJFEVNM ɹࠃཱใֶݚڀॴ ɹɹIUUQXXXOJJBDKQETDJESEBUBMJTUIUNM ɹ%"5"(0+1 ɹɹIUUQXXXEBUBHPKQ ɹ*NBHF/FU ɹɹIUUQXXXJNBHFOFUPSH Next
exercises - ҙͷσʔλͰʂ ɹ,BHHMF ɹɹIUUQTXXXLBHHMFDPNEBUBTFUT ɹ-JWFEPPSχϡʔε ɹɹIUUQOFXTMJWFEPPSDPN ɹ౦ژϝτϩΦʔϓϯσʔλ ɹɹIUUQTEFWFMPQFSUPLZPNFUSPBQQKQJOGP ɹ5XJUUFS"1*ɺͳͲ ҙͷެ։σʔλΛ༻͍ͨػցֶश બ՝
Next exercises - ҙͷσʔλͰʂ
Next exercises - ػցֶशAPIΛͬͯʂ ػցֶशܥΫϥυ"1*Λ༻͍ͨαʔϏε։ൃ બ՝ (PPHMF"84"[VSF#JOH*#.ͷ֤αʔϏεͰػցֶशܥͷ"1*͕ ఏڙ͞Ε͍ͯΔʢྫɿإೝࣝɺԻೝࣝɺςΩετUPεϐʔνɺFUDʣɻ ͜ΕΒͷ"1*Λ͍ɺԿΒཱ͔ͪͦ͏ͳΞϓϦαʔϏεΛ੍࡞͍ͯͩ͘͠͞ɻ
ٻΊΔΞτϓοτ ɹɾͲͷ"1*Λར༻͢Δͷ͔ʁ ɹɾԿʹཱͯΔͷ͔ʁͲͷΑ͏ͳαʔϏε͔ʁ ग़ҙਤ ɹɾֶशࡁΈͷϞσϧΛͲͷΑ͏ʹ࣮ੈքͰ׆͔͢ͷ͔ɺͦΕΛߟ͑ߦಈ͢Δɻ
Next exercises - ػցֶशAPIΛͬͯʂ
Next exercises .PWJF-FOTΛ༻͍ͨϨίϝϯσʔγϣϯͷߏங ࠃௐࠪσʔλΛ༻͍ͨσʔλαΠΤϯε ҙͷެ։σʔλΛ༻͍ͨػցֶश ػցֶशܥΫϥυ"1*Λ༻͍ͨαʔϏε։ൃ
ඞਢ՝ બ՝
Group work ݸਓͦΕͧΕͰऔΓΜͰ͍Δ༰ʢऔΓΉ༰ʣΛڞ༗ ൃද༰·ͱΊʢϓϨθϯܗࣜޱ಄Ͱʣ άϧʔϓϫʔΫΛߦ͍·͢ ʢʙʣ
Group work ൃදʢͲͷΑ͏ͳ༰Λѻ͏͔ʣ άϧʔϓϫʔΫΛߦ͍·͢ ʢʙʣ
Thank you ͦΕͰྑ͍σʔλαΠΤϯεΛʂ