Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Data Science BOOTCAMP Practices
Search
Yohei Munesada
April 28, 2017
Science
0
380
Data Science BOOTCAMP Practices
データサイエンス・機械学習の演習説明です。
http://www.sompo.io/bootcamp/
Yohei Munesada
April 28, 2017
Tweet
Share
More Decks by Yohei Munesada
See All by Yohei Munesada
G'sデータベース設計の講義
yoheimune
4
5.4k
How to create a service, How to google !
yoheimune
0
320
Machine Learning Basic and Python
yoheimune
1
530
Python Scraping and Web Apps for G's ACADEMY TOKYO
yoheimune
0
250
DevelopWorkflow and Solving Problems
yoheimune
0
460
Git and Github for Beginners
yoheimune
1
310
Data Science BOOTCAMP Practices - Recommendation
yoheimune
0
220
Machine Learning with Python
yoheimune
0
370
Python Basics for G's ACADEMY TOKYO
yoheimune
1
640
Other Decks in Science
See All in Science
(メタ)科学コミュニケーターからみたAI for Scienceの同床異夢
rmaruy
0
150
2025-05-31-pycon_italia
sofievl
0
130
AI(人工知能)の過去・現在・未来 —AIは人間を超えるのか—
tagtag
PRO
1
220
機械学習 - DBSCAN
trycycle
PRO
0
1.4k
高校生就活へのDA導入の提案
shunyanoda
0
6.1k
データベース05: SQL(2/3) 結合質問
trycycle
PRO
0
860
ランサムウェア対策にも考慮したVMware、Hyper-V、Azure、AWS間のリアルタイムレプリケーション「Zerto」を徹底解説
climbteam
0
190
My Little Monster
juzishuu
0
370
会社でMLモデルを作るとは @電気通信大学 データアントレプレナーフェロープログラム
yuto16
1
470
データマイニング - コミュニティ発見
trycycle
PRO
0
190
データベース03: 関係データモデル
trycycle
PRO
1
320
AIによる科学の加速: 各領域での革新と共創の未来
masayamoriofficial
0
340
Featured
See All Featured
Building Adaptive Systems
keathley
44
2.9k
How to train your dragon (web standard)
notwaldorf
97
6.5k
svc-hook: hooking system calls on ARM64 by binary rewriting
retrage
1
36
Un-Boring Meetings
codingconduct
0
170
B2B Lead Gen: Tactics, Traps & Triumph
marketingsoph
0
35
Why Your Marketing Sucks and What You Can Do About It - Sophie Logan
marketingsoph
0
53
Refactoring Trust on Your Teams (GOTO; Chicago 2020)
rmw
35
3.3k
Git: the NoSQL Database
bkeepers
PRO
432
66k
Exploring the relationship between traditional SERPs and Gen AI search
raygrieselhuber
PRO
2
3.5k
Self-Hosted WebAssembly Runtime for Runtime-Neutral Checkpoint/Restore in Edge–Cloud Continuum
chikuwait
0
250
16th Malabo Montpellier Forum Presentation
akademiya2063
PRO
0
32
Prompt Engineering for Job Search
mfonobong
0
130
Transcript
Data Science BOOTCAMP ΞϓϦέʔγϣϯ੍࡞ԋश Yohei Munesada
About Me 㾎फఆ༸ฏ ΉͶͩ͞Α͏͍ 㾎 ג αΠόʔΤʔδΣϯτ 㾎(`TΞΧσϛʔϝϯλʔ 㾎IUUQXXXZPIFJNOFU 㾎ͱσʔλαΠΤϯε
िؒɺΈͳ͞·͍͔͕Ͱͨ͠Ͱ͠ΐ͏͔ʁ
May think as … 㾎ֶతͳجૅΛड͚͖ͯͨɻ 㾎Ӭా͞ΜߨٛͰ৭ʑͱख๏ΛֶΜͰ͖ͨɻ 㾎ߨٛதͷԋशΛղ͍͚ͨͲɺͬͱ͍ͯ͠Δͱ͜Ζ͋Δɻ 㾎੍࡞ԋशΛ௨ͯ͠ɺʹ͚͍ͨͱ͜Ζʂ
May think as … ͦ͏ͩʂԿ͔࡞ͬͯΈΑ͏ʂ
Exercises .PWJF-FOTΛ༻͍ͨϨίϝϯσʔγϣϯͷߏங ࠃௐࠪσʔλΛ༻͍ͨσʔλαΠΤϯε ҙͷެ։σʔλΛ༻͍ͨػցֶश ػցֶशܥΫϥυ"1*Λ༻͍ͨαʔϏε։ൃ ඞਢ՝
બ՝
Objective ՌΛग़͢͜ͱ ϑϩʔʹԊͬͨ࡞ۀεςοϓΛ౿Ή͜ͱ
ϑϩʔʹԊͬͨ࡞ۀ
How to ԋशʹऔΓΉͷݸਓͰ ൃදάϧʔϓͰ
Schedule .PWJF-FOTΛ༻͍ͨϨίϝϯσʔγϣϯͷൃද 5VF ϫʔΫ࣭࣌ؒٙԠλΠϜ 8FE ҙ՝ͷൃද 'SJ
Exercises - MovieLens .PWJF-FOTΛ༻͍ͨϨίϝϯσʔγϣϯͷߏங ඞਢ՝ .PWJF-FOTͱ͍͏ެ։σʔλʹɺөըͷใɺϢʔβʔͷөըʹର͢Δใ ͳͲؚ͕·Ε·͢ɻͦΕΒσʔλΛ༻͍ͯϨίϝϯυγεςϜΛߏங͍ͯͩ͘͠͞ɻ ٻΊΔΞτϓοτ ɹɾϢʔβʔʹରͯ͠өըΛਪન͢Δ
ϙΠϯτ ɹɾਪનʹ͍ͭͯͲͷΑ͏ʹػցֶशͱͯ͠ఆٛ͢Δ͔ʁ ɹɾͳͥͦͷϞσϧΛબ͢Δͷ͔ʁ ɹɾ༧ଌ݁ՌͷධՁ݁ՌʁͲͷΑ͏ʹධՁ͢Εྑ͍͔ʁ
Exercises - MovieLens ར༻Մೳͳσʔλ ɹIUUQTHSPVQMFOTPSHEBUBTFUTNPWJFMFOT .PWJF-FOTΛ༻͍ͨϨίϝϯσʔγϣϯͷߏங ඞਢ՝
Exercises - MovieLens
Exercises - ࠃௐࠪ ࠃௐࠪσʔλΛ༻͍ͨσʔλαΠΤϯε બ՝ ࠃௐࠪσʔλ͔ΒਓޱɺՈߏɺ৬ۀͳͲ༷ʑͳใΛಘΔ͜ͱ͕Ͱ͖·͢ɻ ԿΒ͔ͷϏδωε՝Λఆٛͨ͠ͷͪʹɺࠃௐࠪσʔλΛ༻͍ͯϏδωεͷ ҙࢥܾఆΛॿ͚ΔใΛఏ͍ࣔͯͩ͘͠͞ɻ ٻΊΔΞτϓοτ
ɹɾఆٛͨ͠Ϗδωε՝Կ͔ʁ ɹɾͦΕʹରͯ͠ࠃௐࠪσʔλΛͲͷΑ͏ʹ׆༻͔ͨ͠ʁ Ϗδωε՝ྫ ɹɾ*5ڭҭϏδωεΛల։͍ͨ͠ɻͲͷࢢொଜΛλʔήοτʹ͢Δ͖͔ʁ ɹɾϑΟϦϐϯਓʹ͚ͨΧϑΣϏδωεΛߦ͍͍ͨɻͲ͜ͰΔ͔ʁ ɹɾͳͲ
ར༻Մೳͳσʔλ ɹIUUQXXXTUBUHPKQEBUBLPLVTFJJOEFYIUN Exercises - ࠃௐࠪ ࠃௐࠪσʔλΛ༻͍ͨσʔλαΠΤϯε બ՝
Exercises - ࠃௐࠪ
Exercises - ҙͷσʔλͰʂ ҙͷެ։σʔλΛ༻͍ͨػցֶश બ՝ ੈͷதʹ༷ʑͳσʔλ͕ެ։͞Ε͓ͯΓɺػցֶशʹར༻Ͱ͖Δσʔλ ଟʑଘࡏ͠·͢ɻڵຯͷ͋Δσʔλʹ͍ͭͯԾઆΛఆٛͯ͠ػցֶशΛߦ͍ɺ ԿΒ͔ͷՌΛग़͢औΓΈΛ͍ͯͩ͘͠͞ɻ ٻΊΔΞτϓοτ
ɹɾͲͷΑ͏ͳσʔλΛ͏͔ʁ ɹɾͲΜͳԾઆΛઃఆ͔ͨ͠ʁ ɹɾͲͷΑ͏ͳՌΛಋ͍ͨͷ͔ʁ·ͨͦΕΛͲͷΑ͏ʹಋ͍ͨͷ͔ʁ
ར༻Մೳͳσʔλྫ ɹ6$*.BDIJOF-FBSOJOH ɹɹIUUQBSDIJWFJDTVDJFEVNM ɹࠃཱใֶݚڀॴ ɹɹIUUQXXXOJJBDKQETDJESEBUBMJTUIUNM ɹ%"5"(0+1 ɹɹIUUQXXXEBUBHPKQ ɹ*NBHF/FU ɹɹIUUQXXXJNBHFOFUPSH Exercises
- ҙͷσʔλͰʂ ɹ,BHHMF ɹɹIUUQTXXXLBHHMFDPNEBUBTFUT ɹ-JWFEPPSχϡʔε ɹɹIUUQOFXTMJWFEPPSDPN ɹ౦ژϝτϩΦʔϓϯσʔλ ɹɹIUUQTEFWFMPQFSUPLZPNFUSPBQQKQJOGP ɹ5XJUUFS"1*ɺͳͲ ҙͷެ։σʔλΛ༻͍ͨػցֶश બ՝
Exercises - ҙͷσʔλͰʂ
Exercises - ػցֶशAPIΛͬͯʂ ػցֶशܥΫϥυ"1*Λ༻͍ͨαʔϏε։ൃ બ՝ (PPHMF"84"[VSF#JOH*#.ͷ֤αʔϏεͰػցֶशܥͷ"1*͕ ఏڙ͞Ε͍ͯΔʢྫɿإೝࣝɺԻೝࣝɺςΩετUPεϐʔνɺFUDʣɻ ͜ΕΒͷ"1*Λ͍ɺԿΒཱ͔ͪͦ͏ͳΞϓϦαʔϏεΛ੍࡞͍ͯͩ͘͠͞ɻ ٻΊΔΞτϓοτ
ɹɾͲͷ"1*Λར༻͢Δͷ͔ʁ ɹɾԿʹཱͯΔͷ͔ʁͲͷΑ͏ͳαʔϏε͔ʁ ग़ҙਤ ɹɾֶशࡁΈͷϞσϧΛͲͷΑ͏ʹ࣮ੈքͰ׆͔͢ͷ͔ɺͦΕΛߟ͑ߦಈ͢Δɻ
Exercises - ػցֶशAPIΛͬͯʂ
Exercises બ՝͕͔͔࣌ؒΓ·͢ͷͰɺ ͓ૣΊʹʂ .PWJF-FOTΛ༻͍ͨϨίϝϯσʔγϣϯͷߏங ࠃௐࠪσʔλΛ༻͍ͨσʔλαΠΤϯε ҙͷެ։σʔλΛ༻͍ͨػցֶश
ػցֶशܥΫϥυ"1*Λ༻͍ͨαʔϏε։ൃ ඞਢ՝ બ՝
Q and A ࣭ٙԠλΠϜ
Team Building άϧʔϓ͚Λ͠·͢ ʢʙਓఔʣ
Team Building ࣗݾհͱσΟεΧογϣϯ
Thank you ͦΕͰྑ͍σʔλαΠΤϯεΛʂ