Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Data Science BOOTCAMP Practices
Search
Yohei Munesada
April 28, 2017
Science
0
360
Data Science BOOTCAMP Practices
データサイエンス・機械学習の演習説明です。
http://www.sompo.io/bootcamp/
Yohei Munesada
April 28, 2017
Tweet
Share
More Decks by Yohei Munesada
See All by Yohei Munesada
G'sデータベース設計の講義
yoheimune
4
5.2k
How to create a service, How to google !
yoheimune
0
290
Machine Learning Basic and Python
yoheimune
1
500
Python Scraping and Web Apps for G's ACADEMY TOKYO
yoheimune
0
230
DevelopWorkflow and Solving Problems
yoheimune
0
440
Git and Github for Beginners
yoheimune
1
280
Data Science BOOTCAMP Practices - Recommendation
yoheimune
0
200
Machine Learning with Python
yoheimune
0
330
Python Basics for G's ACADEMY TOKYO
yoheimune
1
590
Other Decks in Science
See All in Science
Masseyのレーティングを用いたフォーミュラレースドライバーの実績評価手法の開発 / Development of a Performance Evaluation Method for Formula Race Drivers Using Massey Ratings
konakalab
0
110
Spectral Sparsification of Hypergraphs
tasusu
0
290
Transformers are Universal in Context Learners
gpeyre
0
790
Factorized Diffusion: Perceptual Illusions by Noise Decomposition
tomoaki0705
0
370
AI(人工知能)の過去・現在・未来 —AIは人間を超えるのか—
tagtag
0
100
眼科AIコンテスト2024_特別賞_6位Solution
pon0matsu
0
340
(論文読み)贈り物の交換による地位の競争と社会構造の変化 - 文化人類学への統計物理学的アプローチ -
__ymgc__
1
210
Reconciling Accuracy, Cost, and Latency of Inference Serving Systems
pjamshidi
0
140
統計的因果探索: 背景知識とデータにより因果仮説を探索する
sshimizu2006
3
800
04_石井クンツ昌子_お茶の水女子大学理事_副学長_D_I社会実現へ向けて.pdf
sip3ristex
0
320
観察研究における因果推論
nearme_tech
PRO
1
220
トラブルがあったコンペに学ぶデータ分析
tereka114
2
1.5k
Featured
See All Featured
Mobile First: as difficult as doing things right
swwweet
223
9.6k
Side Projects
sachag
453
42k
CoffeeScript is Beautiful & I Never Want to Write Plain JavaScript Again
sstephenson
160
15k
Faster Mobile Websites
deanohume
306
31k
YesSQL, Process and Tooling at Scale
rocio
172
14k
Being A Developer After 40
akosma
91
590k
Large-scale JavaScript Application Architecture
addyosmani
512
110k
Performance Is Good for Brains [We Love Speed 2024]
tammyeverts
10
770
Visualization
eitanlees
146
16k
"I'm Feeling Lucky" - Building Great Search Experiences for Today's Users (#IAC19)
danielanewman
227
22k
RailsConf & Balkan Ruby 2019: The Past, Present, and Future of Rails at GitHub
eileencodes
136
33k
How to train your dragon (web standard)
notwaldorf
91
6k
Transcript
Data Science BOOTCAMP ΞϓϦέʔγϣϯ੍࡞ԋश Yohei Munesada
About Me 㾎फఆ༸ฏ ΉͶͩ͞Α͏͍ 㾎 ג αΠόʔΤʔδΣϯτ 㾎(`TΞΧσϛʔϝϯλʔ 㾎IUUQXXXZPIFJNOFU 㾎ͱσʔλαΠΤϯε
िؒɺΈͳ͞·͍͔͕Ͱͨ͠Ͱ͠ΐ͏͔ʁ
May think as … 㾎ֶతͳجૅΛड͚͖ͯͨɻ 㾎Ӭా͞ΜߨٛͰ৭ʑͱख๏ΛֶΜͰ͖ͨɻ 㾎ߨٛதͷԋशΛղ͍͚ͨͲɺͬͱ͍ͯ͠Δͱ͜Ζ͋Δɻ 㾎੍࡞ԋशΛ௨ͯ͠ɺʹ͚͍ͨͱ͜Ζʂ
May think as … ͦ͏ͩʂԿ͔࡞ͬͯΈΑ͏ʂ
Exercises .PWJF-FOTΛ༻͍ͨϨίϝϯσʔγϣϯͷߏங ࠃௐࠪσʔλΛ༻͍ͨσʔλαΠΤϯε ҙͷެ։σʔλΛ༻͍ͨػցֶश ػցֶशܥΫϥυ"1*Λ༻͍ͨαʔϏε։ൃ ඞਢ՝
બ՝
Objective ՌΛग़͢͜ͱ ϑϩʔʹԊͬͨ࡞ۀεςοϓΛ౿Ή͜ͱ
ϑϩʔʹԊͬͨ࡞ۀ
How to ԋशʹऔΓΉͷݸਓͰ ൃදάϧʔϓͰ
Schedule .PWJF-FOTΛ༻͍ͨϨίϝϯσʔγϣϯͷൃද 5VF ϫʔΫ࣭࣌ؒٙԠλΠϜ 8FE ҙ՝ͷൃද 'SJ
Exercises - MovieLens .PWJF-FOTΛ༻͍ͨϨίϝϯσʔγϣϯͷߏங ඞਢ՝ .PWJF-FOTͱ͍͏ެ։σʔλʹɺөըͷใɺϢʔβʔͷөըʹର͢Δใ ͳͲؚ͕·Ε·͢ɻͦΕΒσʔλΛ༻͍ͯϨίϝϯυγεςϜΛߏங͍ͯͩ͘͠͞ɻ ٻΊΔΞτϓοτ ɹɾϢʔβʔʹରͯ͠өըΛਪન͢Δ
ϙΠϯτ ɹɾਪનʹ͍ͭͯͲͷΑ͏ʹػցֶशͱͯ͠ఆٛ͢Δ͔ʁ ɹɾͳͥͦͷϞσϧΛબ͢Δͷ͔ʁ ɹɾ༧ଌ݁ՌͷධՁ݁ՌʁͲͷΑ͏ʹධՁ͢Εྑ͍͔ʁ
Exercises - MovieLens ར༻Մೳͳσʔλ ɹIUUQTHSPVQMFOTPSHEBUBTFUTNPWJFMFOT .PWJF-FOTΛ༻͍ͨϨίϝϯσʔγϣϯͷߏங ඞਢ՝
Exercises - MovieLens
Exercises - ࠃௐࠪ ࠃௐࠪσʔλΛ༻͍ͨσʔλαΠΤϯε બ՝ ࠃௐࠪσʔλ͔ΒਓޱɺՈߏɺ৬ۀͳͲ༷ʑͳใΛಘΔ͜ͱ͕Ͱ͖·͢ɻ ԿΒ͔ͷϏδωε՝Λఆٛͨ͠ͷͪʹɺࠃௐࠪσʔλΛ༻͍ͯϏδωεͷ ҙࢥܾఆΛॿ͚ΔใΛఏ͍ࣔͯͩ͘͠͞ɻ ٻΊΔΞτϓοτ
ɹɾఆٛͨ͠Ϗδωε՝Կ͔ʁ ɹɾͦΕʹରͯ͠ࠃௐࠪσʔλΛͲͷΑ͏ʹ׆༻͔ͨ͠ʁ Ϗδωε՝ྫ ɹɾ*5ڭҭϏδωεΛల։͍ͨ͠ɻͲͷࢢொଜΛλʔήοτʹ͢Δ͖͔ʁ ɹɾϑΟϦϐϯਓʹ͚ͨΧϑΣϏδωεΛߦ͍͍ͨɻͲ͜ͰΔ͔ʁ ɹɾͳͲ
ར༻Մೳͳσʔλ ɹIUUQXXXTUBUHPKQEBUBLPLVTFJJOEFYIUN Exercises - ࠃௐࠪ ࠃௐࠪσʔλΛ༻͍ͨσʔλαΠΤϯε બ՝
Exercises - ࠃௐࠪ
Exercises - ҙͷσʔλͰʂ ҙͷެ։σʔλΛ༻͍ͨػցֶश બ՝ ੈͷதʹ༷ʑͳσʔλ͕ެ։͞Ε͓ͯΓɺػցֶशʹར༻Ͱ͖Δσʔλ ଟʑଘࡏ͠·͢ɻڵຯͷ͋Δσʔλʹ͍ͭͯԾઆΛఆٛͯ͠ػցֶशΛߦ͍ɺ ԿΒ͔ͷՌΛग़͢औΓΈΛ͍ͯͩ͘͠͞ɻ ٻΊΔΞτϓοτ
ɹɾͲͷΑ͏ͳσʔλΛ͏͔ʁ ɹɾͲΜͳԾઆΛઃఆ͔ͨ͠ʁ ɹɾͲͷΑ͏ͳՌΛಋ͍ͨͷ͔ʁ·ͨͦΕΛͲͷΑ͏ʹಋ͍ͨͷ͔ʁ
ར༻Մೳͳσʔλྫ ɹ6$*.BDIJOF-FBSOJOH ɹɹIUUQBSDIJWFJDTVDJFEVNM ɹࠃཱใֶݚڀॴ ɹɹIUUQXXXOJJBDKQETDJESEBUBMJTUIUNM ɹ%"5"(0+1 ɹɹIUUQXXXEBUBHPKQ ɹ*NBHF/FU ɹɹIUUQXXXJNBHFOFUPSH Exercises
- ҙͷσʔλͰʂ ɹ,BHHMF ɹɹIUUQTXXXLBHHMFDPNEBUBTFUT ɹ-JWFEPPSχϡʔε ɹɹIUUQOFXTMJWFEPPSDPN ɹ౦ژϝτϩΦʔϓϯσʔλ ɹɹIUUQTEFWFMPQFSUPLZPNFUSPBQQKQJOGP ɹ5XJUUFS"1*ɺͳͲ ҙͷެ։σʔλΛ༻͍ͨػցֶश બ՝
Exercises - ҙͷσʔλͰʂ
Exercises - ػցֶशAPIΛͬͯʂ ػցֶशܥΫϥυ"1*Λ༻͍ͨαʔϏε։ൃ બ՝ (PPHMF"84"[VSF#JOH*#.ͷ֤αʔϏεͰػցֶशܥͷ"1*͕ ఏڙ͞Ε͍ͯΔʢྫɿإೝࣝɺԻೝࣝɺςΩετUPεϐʔνɺFUDʣɻ ͜ΕΒͷ"1*Λ͍ɺԿΒཱ͔ͪͦ͏ͳΞϓϦαʔϏεΛ੍࡞͍ͯͩ͘͠͞ɻ ٻΊΔΞτϓοτ
ɹɾͲͷ"1*Λར༻͢Δͷ͔ʁ ɹɾԿʹཱͯΔͷ͔ʁͲͷΑ͏ͳαʔϏε͔ʁ ग़ҙਤ ɹɾֶशࡁΈͷϞσϧΛͲͷΑ͏ʹ࣮ੈքͰ׆͔͢ͷ͔ɺͦΕΛߟ͑ߦಈ͢Δɻ
Exercises - ػցֶशAPIΛͬͯʂ
Exercises બ՝͕͔͔࣌ؒΓ·͢ͷͰɺ ͓ૣΊʹʂ .PWJF-FOTΛ༻͍ͨϨίϝϯσʔγϣϯͷߏங ࠃௐࠪσʔλΛ༻͍ͨσʔλαΠΤϯε ҙͷެ։σʔλΛ༻͍ͨػցֶश
ػցֶशܥΫϥυ"1*Λ༻͍ͨαʔϏε։ൃ ඞਢ՝ બ՝
Q and A ࣭ٙԠλΠϜ
Team Building άϧʔϓ͚Λ͠·͢ ʢʙਓఔʣ
Team Building ࣗݾհͱσΟεΧογϣϯ
Thank you ͦΕͰྑ͍σʔλαΠΤϯεΛʂ