Upgrade to PRO for Only $50/Year—Limited-Time Offer! 🔥
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
猫にもわかるAI
Search
Hideyuki Yokoyama
December 20, 2020
Technology
1
50
猫にもわかるAI
非技術者のための、AIの分類と簡単な説明です。
Hideyuki Yokoyama
December 20, 2020
Tweet
Share
Other Decks in Technology
See All in Technology
アプリにAIを正しく組み込むための アーキテクチャ── 国産LLMの現実と実践
kohju
0
190
マイクロサービスへの5年間 ぶっちゃけ何をしてどうなったか
joker1007
18
7.4k
AI時代の新規LLMプロダクト開発: Findy Insightsを3ヶ月で立ち上げた舞台裏と振り返り
dakuon
0
410
ExpoのインダストリーブースでみたAWSが見せる製造業の未来
hamadakoji
0
190
ソフトウェアエンジニアとAIエンジニアの役割分担についてのある事例
kworkdev
PRO
0
120
「図面」から「法則」へ 〜メタ視点で読み解く現代のソフトウェアアーキテクチャ〜
scova0731
0
470
通勤手当申請チェックエージェント開発のリアル
whisaiyo
3
370
【U/Day Tokyo 2025】Cygames流 最新スマートフォンゲームの技術設計 〜『Shadowverse: Worlds Beyond』におけるアーキテクチャ再設計の挑戦~
cygames
PRO
2
1.2k
SREには開発組織全体で向き合う
koh_naga
0
410
AWS re:Invent 2025 re:Cap LT大会 データベース好きが語る re:Invent 2025 データベースアップデート/セッションの紹介
coldairflow
0
150
AWSの新機能をフル活用した「re:Inventエージェント」開発秘話
minorun365
2
350
_第4回__AIxIoTビジネス共創ラボ紹介資料_20251203.pdf
iotcomjpadmin
0
120
Featured
See All Featured
Visualization
eitanlees
150
16k
The Language of Interfaces
destraynor
162
25k
Facilitating Awesome Meetings
lara
57
6.7k
How to Grow Your eCommerce with AI & Automation
katarinadahlin
PRO
0
70
svc-hook: hooking system calls on ARM64 by binary rewriting
retrage
1
23
Let's Do A Bunch of Simple Stuff to Make Websites Faster
chriscoyier
508
140k
How STYLIGHT went responsive
nonsquared
100
6k
The Director’s Chair: Orchestrating AI for Truly Effective Learning
tmiket
0
62
Measuring & Analyzing Core Web Vitals
bluesmoon
9
710
Stewardship and Sustainability of Urban and Community Forests
pwiseman
0
69
Lightning Talk: Beautiful Slides for Beginners
inesmontani
PRO
1
400
Darren the Foodie - Storyboard
khoart
PRO
0
1.9k
Transcript
猫にもわかるAI
自己紹介 - @yoko8ma - 某AIスタートアップでSAや技術採用など
AIの分類 強いAI 弱いAI ルール ベース 遺伝的 アルゴ リズム 機械学習 教師あ
り 教師な し 強化学 習 ニューラルネットワーク 深層学習
AIとは? 強いAI 弱いAI と
強いAI
人間と同じように思考できるAI - ドラえもん - 2001年宇宙の旅のHAL - ターミネーター 2020年現在、強いAIは存在していない そもそも実現可能かどうかも不明
弱いAI
特定領域の問題解決に特化したAI - ルンバ → 掃除 - Alpha Go → 囲碁
SiriやAlexaも弱いAIの一種
AIとは?(再び) ルール ベース 機械 学習 遺伝的 アルゴリズム
ルールベースとは? 事前に設定したルールに一致した答えを返すシステム 全てのルールを人間が考える 想定外には対応できない クロネコヤマトの再配達受付チャットボットなど
遺伝的アルゴリズムとは? 手当たり次第に答えを用意して、問題に対して一番成績が良かっ たものを残す これを繰り返して最適化していく N700系新幹線のフロントノーズ設計など
機械学習とは? 膨大なデータからパターンを見つけ出す(=学習) パターンを使って未知のデータを分類・予測する 学習方法に種類がある - 教師あり学習 - 教師なし学習 - 強化学習
教師あり学習とは? 用意したデータに人間がラベル(=正解)をつけていく AIはデータとラベルの組み合わせを学習する 学習した結果をモデルという モデルを使って未知のデータから正解を予測する
教師なし学習とは? 用意したデータをAIが分類する 分類した結果に人間がラベルをつける 分類方法を学習したモデルを使って未知のデータを分類する
強化学習とは? 振る舞いによって得られた報酬から、振る舞いを再帰的に学習す る方法 自動運転やゲームでの利用が多い
AIの分類 強いAI 弱いAI ルール ベース 遺伝的 アルゴ リズム 機械学習 教師あ
り 教師な し 強化 学習 ニューラルネットワーク 深層学習
弊社の主戦場 深層学習を使わない教師あり学習 - データはある - データに対するラベリングをする - 精度の良いモデルをつくる - 分類・予測する
分類 人が在宅かどうか判定したい 過去の電力データと、それに対応する在不在ラベルを用意する 学習する 今の電力データをもとに在不在を判定する
回帰 過去の発注と在庫のデータがある 在庫を最小にするような発注数を学習する 学習したモデルを使って来週の発注数を予測する