Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
猫にもわかるAI
Search
Hideyuki Yokoyama
December 20, 2020
Technology
1
47
猫にもわかるAI
非技術者のための、AIの分類と簡単な説明です。
Hideyuki Yokoyama
December 20, 2020
Tweet
Share
Other Decks in Technology
See All in Technology
技術的負債解消の取り組みと専門チームのお話 #技術的負債_Findy
bengo4com
1
1.3k
スタートアップ1人目QAエンジニアが QAチームを立ち上げ、“個”からチーム、 そして“組織”に成長するまで / How to set up QA team at reiwatravel
mii3king
2
1.5k
現場の種を事業の芽にする - エンジニア主導のイノベーションを事業戦略に装着する方法 -
kzkmaeda
2
2.1k
(機械学習システムでも) SLO から始める信頼性構築 - ゆる SRE#9 2025/02/21
daigo0927
0
150
Helm , Kustomize に代わる !? 次世代 k8s パッケージマネージャー Glasskube 入門 / glasskube-entry
parupappa2929
0
250
PHPで印刷所に入稿できる名札データを作る / Generating Print-Ready Name Tag Data with PHP
tomzoh
0
120
エンジニアが加速させるプロダクトディスカバリー 〜最速で価値ある機能を見つける方法〜 / product discovery accelerated by engineers
rince
4
380
OpenID BizDay#17 KYC WG活動報告(法人) / 20250219-BizDay17-KYC-legalidentity
oidfj
0
250
あれは良かった、あれは苦労したB2B2C型SaaSの新規開発におけるCloud Spanner
hirohito1108
2
640
開発組織のための セキュアコーディング研修の始め方
flatt_security
3
2.4k
Culture Deck
optfit
0
430
データの品質が低いと何が困るのか
kzykmyzw
6
1.1k
Featured
See All Featured
Learning to Love Humans: Emotional Interface Design
aarron
273
40k
Fireside Chat
paigeccino
34
3.2k
VelocityConf: Rendering Performance Case Studies
addyosmani
328
24k
Building Your Own Lightsaber
phodgson
104
6.2k
Building Flexible Design Systems
yeseniaperezcruz
328
38k
The Web Performance Landscape in 2024 [PerfNow 2024]
tammyeverts
4
410
Git: the NoSQL Database
bkeepers
PRO
427
64k
Refactoring Trust on Your Teams (GOTO; Chicago 2020)
rmw
33
2.8k
Exploring the Power of Turbo Streams & Action Cable | RailsConf2023
kevinliebholz
30
4.6k
Product Roadmaps are Hard
iamctodd
PRO
50
11k
Helping Users Find Their Own Way: Creating Modern Search Experiences
danielanewman
29
2.4k
個人開発の失敗を避けるイケてる考え方 / tips for indie hackers
panda_program
100
18k
Transcript
猫にもわかるAI
自己紹介 - @yoko8ma - 某AIスタートアップでSAや技術採用など
AIの分類 強いAI 弱いAI ルール ベース 遺伝的 アルゴ リズム 機械学習 教師あ
り 教師な し 強化学 習 ニューラルネットワーク 深層学習
AIとは? 強いAI 弱いAI と
強いAI
人間と同じように思考できるAI - ドラえもん - 2001年宇宙の旅のHAL - ターミネーター 2020年現在、強いAIは存在していない そもそも実現可能かどうかも不明
弱いAI
特定領域の問題解決に特化したAI - ルンバ → 掃除 - Alpha Go → 囲碁
SiriやAlexaも弱いAIの一種
AIとは?(再び) ルール ベース 機械 学習 遺伝的 アルゴリズム
ルールベースとは? 事前に設定したルールに一致した答えを返すシステム 全てのルールを人間が考える 想定外には対応できない クロネコヤマトの再配達受付チャットボットなど
遺伝的アルゴリズムとは? 手当たり次第に答えを用意して、問題に対して一番成績が良かっ たものを残す これを繰り返して最適化していく N700系新幹線のフロントノーズ設計など
機械学習とは? 膨大なデータからパターンを見つけ出す(=学習) パターンを使って未知のデータを分類・予測する 学習方法に種類がある - 教師あり学習 - 教師なし学習 - 強化学習
教師あり学習とは? 用意したデータに人間がラベル(=正解)をつけていく AIはデータとラベルの組み合わせを学習する 学習した結果をモデルという モデルを使って未知のデータから正解を予測する
教師なし学習とは? 用意したデータをAIが分類する 分類した結果に人間がラベルをつける 分類方法を学習したモデルを使って未知のデータを分類する
強化学習とは? 振る舞いによって得られた報酬から、振る舞いを再帰的に学習す る方法 自動運転やゲームでの利用が多い
AIの分類 強いAI 弱いAI ルール ベース 遺伝的 アルゴ リズム 機械学習 教師あ
り 教師な し 強化 学習 ニューラルネットワーク 深層学習
弊社の主戦場 深層学習を使わない教師あり学習 - データはある - データに対するラベリングをする - 精度の良いモデルをつくる - 分類・予測する
分類 人が在宅かどうか判定したい 過去の電力データと、それに対応する在不在ラベルを用意する 学習する 今の電力データをもとに在不在を判定する
回帰 過去の発注と在庫のデータがある 在庫を最小にするような発注数を学習する 学習したモデルを使って来週の発注数を予測する